
www.manaraa.com

BIOMATERIAL STRATEGIES FOR IMPROVED BONE HEALING 

WITH BONE MORPHOGENETIC PROTEIN-2 DELIVERY 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

by 

 

 

Lauren B. Priddy 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

Program of Bioengineering 

 

 

Georgia Institute of Technology 

August 2015 

 

 

COPYRIGHT © 2015 BY LAUREN B. PRIDDY



www.manaraa.com

BIOMATERIAL STRATEGIES FOR IMPROVED BONE HEALING 

WITH BONE MORPHOGENETIC PROTEIN-2 DELIVERY 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Robert E. Guldberg, Ph.D., Advisor 
School of Mechanical Engineering 
Georgia Institute of Technology 

 Dr. Johnna S. Temenoff, Ph.D. 
Department of Biomedical Engineering 
Georgia Institute of Technology 

   

Dr. Edward A. Botchwey, Ph.D. 
Department of Biomedical Engineering 
Georgia Institute of Technology 

 Dr. Lisa N. Tran, D.D.S., M.D. 
Department of Surgery 
Emory University School of Medicine 

   

Dr. Andrés J. García, Ph.D. 
School of Mechanical Engineering 
Georgia Institute of Technology 

  

   

  Date Approved:  July 8, 2015 

  



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

To my loving family. 

  

 

 

 

 

 



www.manaraa.com

 

iv 

ACKNOWLEDGEMENTS 

 

 The road to the PhD is not a straight or predictable road, and I have many people to 

thank for helping me along the way. First, thanks to my thesis advisor Dr. Robert Guldberg, 

who helped me become an independent researcher by pushing me to think critically about 

my work and demonstrating the traits of a successful researcher and mentor. I hope to be as 

successful as he is one day with my own lab. I am also grateful for the collective insight of 

my thesis committee members Dr. Johnna Temenoff, Dr. Andrés García, and Dr. Edward 

Botchwey who helped steer my research by their constructive criticism and guidance. A 

special thanks to Dr. Lisa Tran, whose enthusiasm and encouragement were greatly 

appreciated. Thank you for reminding me of the relevance of my work and how it fits into 

clinical orthopedics, as well as for your hours spent helping with surgeries on your days off. 

 A big thanks goes out to all members of the Guldberg lab, both past and present, for 

their contributions to my work. The days of surgeries would not have been possible without 

the collaborative group effort, and I truly enjoyed the camaraderie. I am grateful for both the 

intellectual contributions and friendship of Hazel Stevens, who keeps the Guldberg lab 

ticking and was my sounding board on many occasions when I needed advice. I am honored 

to have had the opportunity to work alongside Dr. Laxmi Krishnan, who is an endless 

source of knowledge and was always eager to help. Thanks to Dr. Nick Willett, Dr. Joel 

Boerckel, and Dr. Brent Uhrig for helping me get started with in vivo work. I am also very 

thankful to Nick for his advice and encouragement during my job search. Thanks to Angela 

Lin for assistance with micro-CT and mechanical testing. Dr. Tamim Diab, Dr. Chris 

Dosier, and Dr. Jessica Green also provided valuable input in my projects early on. I am 

truly grateful for the companionship of Dr. Tanu Thote (my mentor during recruitment) and 



www.manaraa.com

 v 

Dr. Ashley Allen (my post-recruitment mentor)—both were great advocates for the family 

that is the Guldberg lab—as well as my former back row buddy Dr. Alice Li. Tanu, Alice, 

and Ashley, I am forever grateful for your guidance and for being able to share the PhD 

experience with you. Each of you made it a truly fun time that I will always remember 

fondly. Tanu, thank you for blazing the trail and for taking lunch breaks outside with me. 

Alice, thank you for helping me explore new and interesting foods that I otherwise never 

would have tried, and for commiserating about crazy kitties with me. You always knew the 

right research questions to ask, and I appreciate your help with planning experiments early 

on and navigating the nuances of the PhD process later. Ashley, thank you for encouraging 

me in my running—it has truly changed my life! I will miss our run-chats and your constant 

positive outlook on life. Ending the PhD process with you has been a very memorable 

experience. Dr. Tara McFadden, thank you for going to football games with me and for 

sharing your (especially strong) Irish tea. Jason Wang, thank you for being my quals study 

partner and for sharing your genuine love of teaching. Marian Hettiaratchi, Giuliana Salazar-

Noratto, and Marissa Ruehle, it’s been fun with you on the back row. And also to David 

Reece, Olivia Burnsed, Brennan Torstrick, Albert Cheng, Andrew Miller, and Brett 

Klosterhoff, the Guldberg lab is in great hands with you all. Thank you for your friendship 

and intellectual input in my work. You all made work more enjoyable, and I am grateful for 

each and every one of you. The students I mentored—Camden Esancy, Kalah Haley, Nikhil 

Gupte, Sukhita Karthikeyakannan, and Amanda Schaefer—also deserve a big thanks for 

their contributions to my projects. Finally, thanks to the rest of my colleagues in wing 2D 

who were there when I needed a break from research. 

 Many members of the IBB community deserve thanks for their assistance 

throughout my time at Tech. Vivian Johnson was my constant advocate and was always 



www.manaraa.com

 vi 

willing to help. Chris Ruffin was a pleasure to work with during my time leading BGSAC, 

and he will be forever missed. Laura Paige has kept me informed of all the deadlines for 

graduating and has shared enough BioE shirts with me for every day of the week. The IBB 

staff including Megan McDevitt, Floyd Wood, Alyceson Andrews, James Godard, Steve 

Woodard, Colly Mitchell, Allen Echols, and Karen Ethier have generously provided their 

time and help. Thanks also to Aqua Asberry for assistance with histology procedures. 

 I would like to thank my teaching mentor Dr. Brani Vidakovic, who not only 

provided me with valuable experience in the classroom, but also devoted additional time for 

me to participate in the Center for the Enhancement of Teaching and Learning’s (CETL) 

Tech to Teaching Program, which allowed me to further explore how learning works and 

provided me with a solid foundation of techniques I can use in the classroom to promote 

learning. Thanks to the folks in CETL and communications who mentored me, including 

Dr. Damon Williams, Dr. Dave Lawrence, Lori Critz, Dr. Caroline Noyes, and Dr. Wendy 

Newstetter. I am grateful for my experiences in Women in Engineering (WIE) and the 

Society of Women Engineers (SWE) with Dr. Christine Valle, who has been a mentor to me 

and advocate for women in STEM, and has given me many opportunities to share my 

enthusiasm for promoting women in STEM. Thank you to Dr. Laura O’Farrell, Kim 

Benjamin, Andrea Gibson, Ogeda Blue, and all the PRL staff for taking care of our animals, 

making my time in the PRL more enjoyable, and reminding me of the importance of our 

work with animals. I would also like to acknowledge my research collaborators Dr. Ovijit 

Chaudhuri, Dr. Dalia Arafat, and Dr. Tom Koob for their contributions to this work. The 

NIH Graduate Training for Rationally Designed, Integrative Biomaterials Fellowship 

provided me with funding for two years, valuable research and classroom experience in the 

field of biomaterials, and opportunities to build relationships with a great group of people, 



www.manaraa.com

 vii 

especially through the Graduate Leadership Program. I am also grateful for my experiences 

in the BioEngineering Graduate Association (BGA, but will forever be BGSAC to me) and 

the broader Bioengineering and Bioscience Unified Graduate Students (BBUGS) group. 

Finally, a big thanks is due to friends I haven’t mentioned yet, including Dr. Ashley Brown, 

Jen Lei, Dr. Laura Hansen, Dr. Patricia Pacheco, Dr. Alex Caulk, Charla Howard, Dr. Katie 

Mowry, Dr. Joe Chen, Amanda McGowin, Brooke Williams, Blair White, and many others:  

thank you for your friendship and support over the years. 

 I am truly grateful for the constant love and support from my family. Mom and Dad, 

you have always been my biggest fans, encouraging me to believe in myself and follow my 

dreams. Thank you for all you have done and continue to do to help them come true. I 

would like to thank all of my family for helping me become the person I am today. Each one 

of you holds a special place in my heart. Your love and support means the world to me. 

 Last, but certainly not least, I am thankful for the love and support of my husband 

Matthew. Thank you for driving me to and from work every day, even though the traffic 

drove us both crazy sometimes. Thank you for making me laugh, even when I’m so mad that 

I don’t want to. The little moments that happen every day mean so much. Thank you for 

your understanding and encouragement during the trying times. I am so proud of you, and I 

am honored to share this journey with you. You are my inspiration. 



www.manaraa.com

 viii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ...................................................................... iv	  

LIST OF TABLES ................................................................................... xi	  

LIST OF FIGURES ................................................................................ xii	  

LIST OF SYMBOLS AND ABBREVIATIONS .................................... xiv	  

SUMMARY ............................................................................................ xvii	  

I.	   SPECIFIC AIMS ................................................................................ 1	  

II.	   BACKGROUND  ............................................................................... 7	  

2.1	   Bone Physiology ............................................................................................................ 7	  

Bone Structure and Function ................................................................................................................... 7	  

Bone Development and Remodeling ................................................................................................... 10	  

2.2	   Bone Regeneration ....................................................................................................... 11	  

Clinical Motivation .................................................................................................................................. 11	  

Biomaterials in Bone Tissue Engineering ........................................................................................... 12	  

Growth Factor Delivery ......................................................................................................................... 18	  

Inflammation in Bone Healing ............................................................................................................. 21	  

Heterotopic Ossification ........................................................................................................................ 22	  

III.	   OXIDIZED ALGINATE FOR BMP-2 DELIVERY ...................... 25	  

3.1	   Abstract ........................................................................................................................ 25	  

3.2	   Introduction ................................................................................................................ 26	  

3.3	   Materials and Methods ............................................................................................... 28	  

3.4	   Results ......................................................................................................................... 34	  

3.5	   Discussion ................................................................................................................... 44	  



www.manaraa.com

 ix 

IV.	   EFFECTS OF BIOMATERIAL IN HIGH DOSE BMP-2 

DELIVERY .............................................................................................. 49	  

4.1	   Abstract ........................................................................................................................ 49	  

4.2	   Introduction ................................................................................................................ 50	  

4.3	   Materials and Methods ............................................................................................... 54	  

4.4	   Results ......................................................................................................................... 59	  

4.5	   Discussion ................................................................................................................... 69	  

V.	   SPATIOTEMPORAL GENE EXPRESSION PATTERNS AS A 

FUNCTION OF BMP-2 DOSE .............................................................. 76	  

5.1	   Abstract ........................................................................................................................ 76	  

5.2	   Introduction ................................................................................................................ 77	  

5.3	   Materials and Methods ............................................................................................... 81	  

5.4	   Results ......................................................................................................................... 84	  

5.5	   Discussion ................................................................................................................... 91	  

VI.	   THE USE OF AMNION IN HIGH DOSE BMP-2 DELIVERY. 99	  

6.1	   Abstract ........................................................................................................................ 99	  

6.2	   Introduction ............................................................................................................... 100	  

6.3	   Materials and Methods .............................................................................................. 102	  

6.4	   Results ........................................................................................................................ 105	  

6.5	   Discussion .................................................................................................................. 110	  

VII.	   SUMMARY AND CONCLUSIONS  ............................................. 115	  

7.1	   Overall Summary ........................................................................................................ 115	  

7.2	   Biomaterial Degradability: Is It a Prerequisite for Functional Bone Healing? ........ 123	  

7.3	   Alginate-PCL Mesh Constructs for Improving BMP-2 Bioactivity and Localized 

Bone Regeneration ............................................................................................................. 125	  

7.4	   Mechanistic Insight into Bone Healing with High Dose BMP-2 ............................. 127	  

7.5	   Strategies to Mitigate Heterotopic Bone with High Dose BMP-2 ............................ 129	  



www.manaraa.com

 x 

7.6	   Final Conclusions ....................................................................................................... 131	  

APPENDIX A ........................................................................................ 132	  

A.1	   Histomorphometry Protocol ...................................................................................... 132	  

REFERENCES ...................................................................................... 135	  

 

 

 

 



www.manaraa.com

 xi 

LIST OF TABLES 

Table 1. Target genes for qPCR analyses…………………………………………………..83 

Table 2. Classification of target genes for qPCR analyses………………………………….83 

  

 



www.manaraa.com

 xii 

LIST OF FIGURES 

Figure 1. Released and retained BMP-2. ..................................................................................... 36	  

Figure 2. BMP-2 retained in PCL mesh and alginate. ............................................................... 36	  

Figure 3. Bioactivity of released and retained BMP-2. ............................................................. 38	  

Figure 4. Longitudinal radiographs of bone regeneration. ....................................................... 39	  

Figure 5. Bone volume and mineral density over time. ............................................................ 40	  

Figure 6. Biomechanical properties of regenerated bone tissue. ............................................. 41	  

Figure 7. 12 week histology of mid-sagittal sections of bone defect tissue. .......................... 42	  

Figure 8. Histomorphometry of alginate in 12 week bone defect samples. .......................... 43	  

Figure 9. Histomorphometry of lamellar bone in 12 week bone defect samples. ................ 44	  

Figure 10. Release kinetics of BMP-2 from constructs in vitro. ............................................... 60	  

Figure 11. ALP activity normalized to BMP-2. ......................................................................... 61	  

Figure 12. Longitudinal radiographs of regenerating bone defects. ....................................... 62	  

Figure 13. Regenerated bone volumes through 12 weeks. ....................................................... 63	  

Figure 14. Properties of total bone regenerated through 12 weeks. ....................................... 64	  

Figure 15. Biomechanical properties of regenerated bone defect tissue. .............................. 65	  

Figure 16. Heterotopic bone and macrophages at 2 weeks. .................................................... 66	  

Figure 17. Bone defect tissue at 4 weeks. ................................................................................... 67	  

Figure 18. Bone defect tissue at 12 weeks. ................................................................................. 68	  

Figure 19. Heterotopic bone at 4 and 12 weeks. ....................................................................... 69	  

Figure 20. Representative volcano plot. ...................................................................................... 85	  

Figure 21. Gene expression relative to intact controls. ............................................................ 86	  

Figure 22. Schematic of changes in gene expression over time. ............................................. 87	  

Figure 23. Effects of BMP-2 dose on gene expression. ........................................................... 89	  

Figure 24. Principal component analysis of bone tissue. ......................................................... 90	  

Figure 25. Principal component analysis of muscle tissue. ...................................................... 91	  

Figure 26. Proposed altered healing scheme. ............................................................................. 91	  



www.manaraa.com

 xiii 

Figure 27. BMP-2 binding and release. ....................................................................................... 106	  

Figure 28. Radiographs of bone defects through 12 weeks. .................................................... 106	  

Figure 29. Spatial distribution of bone volume and bone mineral density maps. ................ 108	  

Figure 30. Functional assessment of the regenerated bone at 12 weeks. .............................. 109	  

Figure 31. Bone defect tissue at 12 weeks. ................................................................................. 110	  

Figure 32. Color separation in histology images. ....................................................................... 134	  

  

 



www.manaraa.com

 xiv 

LIST OF SYMBOLS AND ABBREVIATIONS 

αMEM 

AA2P 

ACS 

alpha-Minimum Essential Medium 

Ascorbic acid 2-phosphate 

Absorbable collagen sponge 

ALP 

ANOVA 

bFGF 

BMD 

BMP-2 

BMU 

BSA 

BV 

cDNA 

Ct 

dHACM 

ECM 

ELISA 

FBS 

FDA 

FDR 

FOP 

GAGs 

GCSF 

Alkaline phosphatase 

Analysis of variance 

Basic fibroblast growth factor 

Bone mineral density 

Bone morphogenetic protein-2 

Basic multicellular unit 

Bovine serum albumin 

Bone volume 

Complementary deoxyribonucleic acid 

Cycle threshold 

Dehydrated human amnion/chorion membrane 

Extracellular matrix 

Enzyme-linked immunosorbent assay 

Fetal bovine serum 

Food and Drug Administration 

False discovery rate 

Fibrodysplasia ossificans progressiva 

Glycosaminoglycans 

Granulocyte colony stimulating factor 



www.manaraa.com

 xv 

H&E 

HBSS 

HSV 

IACUC 

IHC 

IL 

IL-1Ra 

IM 

Micro-CT 

MC3T3-E1 

MMP 

MSC 

NSAIDs 

OCN 

OCT 

OPG 

OPN 

OSX 

PBS 

PCA 

PCL 

PDGF 

pMOI 

 

Hematoxylin & eosin 

Hank’s Buffered Salt Solution 

Hue, Saturation, Value 

Institutional Animal Care and Use Committee 

Immunohistochemistry 

Interleukin 

Interleukin-1 receptor antagonist 

Intramuscularly 

Micro-computed tomography 

Mouse clonal pre-osteoblasts 

Matrix metalloproteinase 

Mesenchymal stem cell 

Nonsteroidal anti-inflammatory drugs 

Osteocalcin 

Optimum cutting temperature 

Osteoprotegerin 

Osteopontin 

Osterix 

Phosphate buffered saline 

Principal component analysis 

Poly(ε-caprolactone) 

Platelet-derived growth factor 

Polar moment of inertia 



www.manaraa.com

 xvi 

p-NPP 

PSL 

qPCR 

RANKL 

RGD 

rhBMP-2 

RNA 

RSA 

RUNX2 

SDF-1 

SDS 

SEM 

SIS 

TGF-β 

TNF-α 

VEGF 

VOI 

p-Nitrophenyl Phosphate 

Penicillin-streptomycin-L-glutamine 

Quantitative real-time polymerase chain reaction  

Receptor activator of nuclear factor kappa-B ligand 

Arginine-glycine-aspartic acid 

Recombinant human bone morphogenetic protein-2 

Ribonucleic acid 

Rat serum albumin 

Runt-related transcription factor 2 

Stromal cell-derived factor-1 

Sodium dodecyl sulfate 

Standard error of the mean 

Small intestinal submucosa 

Transforming growth factor-beta 

Tumor necrosis factor-alpha 

Vascular endothelial growth factor 

Volume of interest 

  

  
  
  
  
  
 



www.manaraa.com

 xvii 

SUMMARY 

 Musculoskeletal injuries account for two-thirds of all injuries that occur in the United 

States annually, and among these injuries, large bone defects are particularly challenging to 

repair. Although bone morphogenetic protein-2 (BMP-2) delivered on an absorbable 

collagen sponge (ACS) has shown clinical success in long bone healing, complications 

associated with the empirical use of supraphysiological doses of BMP-2, including 

heterotopic mineralization and inflammation, necessitate the development of a biomaterial 

carrier that localizes growth factors to the site of injury. In the development of bone tissue 

engineering strategies, another critical design parameter is the timing of delivery vehicle 

degradation, since bone regeneration may be impeded by the presence of residual 

biomaterials at the injury site. Furthermore, bioactive, naturally derived extracellular matrix 

(ECM) products with pro-healing and immunomodulatory properties are attractive 

therapeutics with rapid translatability that may function to attenuate heterotopic 

mineralization often observed with high dose BMP-2 treatment. 

 The goal of this work was to investigate hybrid biomaterial systems with controlled 

strategies for BMP-2 delivery to promote structural and functional restoration of segmental 

bone defects. Using a critically sized rat segmental bone defect model, we (i) evaluated the 

effects of alginate hydrogel oxidation on BMP-2 release and bone regeneration, (ii) 

elucidated the spatiotemporal effects of high dose BMP-2 on bone healing and gene 

expression, and (iii) investigated the ability of amniotic membrane to attenuate heterotopic 

mineralization in critically sized bone defects. Modification of the delivery vehicle to 

modulate growth factor availability may help minimize adverse side effects associated with 

high dose BMP-2 delivery, while harnessing the healing efficacy of BMP-2 for bone tissue 

engineering applications. 
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 This thesis evaluated novel translatable strategies for promoting biomaterial 

degradation and growth factor localization, as well as attenuating heterotopic mineralization 

in a challenging segmental bone defect model. Of significance, our rat model recapitulated 

adverse effects associated with orthotopic high dose BMP-2 delivery, particularly heterotopic 

mineralization and systemic inflammatory effects. The spatiotemporal differences in gene 

expression as a function of BMP-2 dose may, in part, explain the heterotopic mineralization 

and tissue swelling seen clinically with high doses of BMP-2. By providing insight into the 

complex process of bone healing in the context of growth factor delivery, we may more 

effectively harness endogenous repair mechanisms for successful bone regeneration. 
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I. SPECIFIC AIMS 

 Treatment of large bone defects resulting from traumatic injury or tumor resection 

presents a significant clinical challenge. The gold standard of care, the autograft, still involves 

complications such as pain at the donor site, lack of revascularization at the injury site, and 

non-union, necessitating repeated surgeries or in rare cases, amputation. Since bone tissue 

can regenerate after injury, the development of tissue engineering strategies that support the 

endogenous bone repair process is crucial for successful healing.  

 As alternatives to autograft treatment, the osteoinductive growth factors BMP-2 and 

BMP-7 have been used successfully for regeneration of bone in the clinic. However, the use 

of BMPs at supraphysiological doses often leads to complications including heterotopic 

mineralization and inflammation. Adverse effects such as these are compounded by the 

delivery of BMP within a collagen sponge, which has limited ability to retain growth factor. 

Furthermore, since residual biomaterial at the injury site can hinder the formation of new 

tissue, modifying the biomaterial to accelerate degradation may augment bone healing. 

 Growth factor delivery vehicles capable of mitigating BMP-2-induced adverse effects 

represent a significant clinical need. To develop such therapies, one must first understand 

the mechanisms of bone healing and inflammation in the context of critically sized bone 

defects. To this end, we utilized a well-established rat segmental bone defect model to 

evaluate the therapeutics of interest. Previously with this model, irradiated alginate hydrogels 

enclosed with a poly(ε-caprolactone) (PCL) nanofiber mesh allowed for a more sustained 

release of BMP-2 and enhanced bone regeneration compared to delivery with collagen 

sponge. Using this model as a platform, our goal was to recapitulate the negative effects of a 

more clinically relevant (higher) dose of BMP-2. Subsequently, the effects of BMP-2 dose on 

gene expression in the bone defect and surrounding soft tissue were examined during early 
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bone healing. Additionally, biomaterial parameters (e.g., degradation, growth factor 

release/bioactivity) were modulated to evaluate their effects on bone regeneration. This 

model was then used to assess the efficacy of ECM-derived material to spatially restrict bone 

formation with high dose BMP-2 delivery. The overall objective of this work was to investigate 

hybrid biomaterial systems with controlled strategies for BMP-2 delivery to promote 

structural and functional restoration of segmental bone defects. The central hypothesis was that 

a biomaterial delivery vehicle that allows for localized growth factor availability and minimal 

heterotopic bone formation will facilitate structural and functional restoration of segmental 

bone defects. We tested this hypothesis via the following specific aims: 

  

Aim 1:  Evaluate the effects of alginate hydrogel oxidation on BMP-2 release and 

bone regeneration 

 The interplay between carrier degradation, growth factor release, and tissue ingrowth 

remains poorly understood. With these design parameters in mind, this aim evaluated the 

regenerative capacity of an oxidized-irradiated alginate hydrogel as a delivery vehicle for 

BMP-2 in a large bone defect model. We hypothesized that oxidized-irradiated alginate would 

accelerate the release of BMP-2, degrade faster in vivo, and facilitate the formation of higher 

quality, more mature bone. Release kinetics and bioactivity of BMP-2 released from and 

retained within alginate hydrogels in vitro were quantified via ELISA and alkaline 

phosphatase (ALP) induction assays, respectively. Critically sized (8-mm) rat femoral 

segmental defects were treated with low dose recombinant human BMP-2 (rhBMP-2) in 

irradiated alginate or oxidized-irradiated alginate, surrounded by a PCL nanofiber mesh. 

Bone regeneration was assessed via radiography, micro-CT, and mechanical testing. 

Histology was conducted to identify residual alginate and newly formed bone within the 

defect region.  
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 Aim 2:  Elucidate the spatiotemporal effects of high dose BMP-2 on bone healing 

and gene expression 

 Clinically, the use of high doses of BMP-2 is associated with many adverse effects 

including heterotopic bone formation and tissue swelling. However, the consequences of 

supraphysiological doses of BMP-2 on bone healing and inflammation have not been well 

characterized. Therefore, in this aim we examined bone regeneration and inflammation 

associated with high dose BMP-2 delivery in a critically sized bone defect model. Release 

kinetics of high dose BMP-2 from collagen sponge, collagen sponge+mesh, and irradiated 

alginate+mesh in vitro were compared. Critically sized segmental bone defects were treated 

with high dose rhBMP-2 in collagen sponge or irradiated alginate, both surrounded by a 

mesh. Bone regeneration was assessed via radiography, micro-CT, and mechanical testing. 

Routine histology and immunohistochemistry (IHC) was conducted to observe spatial 

distribution of mineralization and identify inflammatory mediators within the defect space. 

We first hypothesized that the alginate delivery system would lead to reduced heterotopic 

mineralization compared to the collagen sponge system. Subsequently, we further 

characterized mechanisms of bone formation and inflammation in the context of critically 

sized bone defects as a function of BMP-2 dose. Using quantitative real-time polymerase 

chain reaction (qPCR), the effects of BMP-2 dose on osteogenic and inflammatory gene 

expression profiles in the bone defect and surrounding soft tissue were assessed. Our 

hypothesis here was that high dose BMP-2 would elicit greater osteogenic and inflammatory 

gene expression in both the bone defect and muscle tissue compared to low dose BMP-2. 
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Aim 3:  Investigate the ability of amniotic membrane to attenuate heterotopic 

mineralization in critically sized bone defects 

 The amniotic membrane is a natural ECM material containing structural collagens 

and proteoglycans, as well as potent anti-inflammatory cytokines and growth factors, making 

it an ideal candidate for tissue healing applications. Based on our results from Aim 2 

demonstrating the presence of heterotopic mineralization adjacent to bone defects treated 

with high dose BMP-2, we believed amniotic membrane (dehydrated human 

amnion/chorion membrane, dHACM) surrounding the bone defect space would serve as an 

effective barrier to mitigate heterotopic mineralization. Release kinetics of BMP-2 from 

amnion and PCL nanofiber mesh were evaluated in vitro by ELISA. Subsequently, two 

clinically available delivery systems—collagen sponge alone and collagen sponge surrounded 

by amnion—were used to deliver high dose BMP-2 in our rat critically sized segmental bone 

defect model. Outcome measures included radiography, micro-CT, mechanical testing, and 

histology. We hypothesized that amniotic membrane surrounding collagen sponge would result 

in less heterotopic mineralization compared to collagen sponge alone. 
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Significance and Scientific Impact 

 This thesis provides significant insights into strategies for promoting biomaterial 

degradation and growth factor bioactivity and localization, as well as reducing heterotopic 

mineralization in a challenging segmental bone defect model. Importantly, our rat model 

recapitulated adverse effects observed clinically with orthotopic high dose BMP-2 delivery, 

specifically heterotopic mineralization, prolonged local inflammation, and systemic 

inflammatory effects. Although the hybrid alginate-PCL delivery system did not reduce 

heterotopic ossification with high dose BMP-2, it enhanced bone formation within the 

defect space compared to the collagen-PCL vehicle, likely due to the prolonged, enhanced 

bioactivity of the BMP-2 remaining in the alginate constructs. 

 By identifying specific alterations in gene expression as a function of time and BMP-

2 dose, this thesis contributes to our understanding of the complex process of bone healing 

during the early stages of large bone defect regeneration. Of significance, an earlier 

resolution of inflammation in the bone defect microenvironment following treatment with 

low dose BMP-2 was observed. The spatiotemporal differences in gene expression as a 

function of BMP-2 dose may, in part, explain the heterotopic mineralization and tissue 

swelling seen clinically with high doses of BMP-2. 

 Extracellular matrix-derived amniotic membrane surrounding collagen sponge 

scaffolds resulted in less heterotopic mineralization compared to collagen sponge alone. This 

finding may be attributed to the amnion functioning as a biological sink for BMP-2 (retained 

more BMP-2 than standard PCL mesh membrane) and/or the immunomodulatory factors 

present in the amnion. The reduction in heterotopic ossification is especially important 

because these materials are available for use clinically, which may drastically accelerate the 

translation of the amnion for bone regeneration applications.  
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 The findings here support the overall hypothesis that a biomaterial delivery vehicle 

that allows for localized growth factor availability and minimal heterotopic bone formation 

would facilitate structural and functional restoration of segmental bone defects. By 

considering these fundamental biomaterial parameters, we may more effectively harness 

endogenous repair mechanisms for successful bone regeneration. 

   

 



www.manaraa.com

 7 

II. BACKGROUND1 2 

2.1 Bone Physiology 

Bone Structure and Function 

 As an organ, bone plays crucial roles in homeostasis both physiologically and 

structurally. The primary metabolic actions of bone include regulation of calcium, 

phosphate, and growth factor availability; coordination of hormone levels with other organs; 

production and maintenance of hematopoietic stem cells in the marrow space; and reservoir 

of mesenchymal stem cells (MSCs) that contribute in the formation of bone [1, 2]. 

Structurally, bone also performs many essential functions: (i) providing the frame that both 

supports the body’s weight and protects vital organs, and (ii) serving as the insertion point 

for muscles (via tendons) and the attachment to other bones (via ligaments) to allow for 

movement. 

 Bone can be classified as cortical (compact) bone or trabecular (cancellous) bone. 

Cortical bone serves mainly structural and protective roles as the dense outer shell of bones 

and is coated by the periosteum. The bones of the limbs and limb girdles (appendicular 

skeleton) are composed primarily of cortical bone. Human cortical bone is organized into 

units called osteons that each contain a central Haversian canal, which allows for nutrient 

and waste exchange in the highly dense tissue. Conversely, the axial skeleton bones (bones of 
                                                

 

 

1 Portions of this chapter were adapted from Priddy L B, Chaudhuri O, Stevens H Y, Krishnan L, Uhrig B A, 
Willett N J, Guldberg R E. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long 
bone defects. Acta Biomaterialia, 10(10), 4390-4399, 2014. License No. 3603720780456 
2 Portions of this chapter were adapted from Allen A B, Priddy L B, Li M T, Guldberg R E. Functional 
augmentation of naturally-derived materials for tissue regeneration. Ann Biomed Eng, 43(3), 555-567, 2015. 
License No. 3630480316395  
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the skull, spine, ribs, and sternum) and the metaphyses of long bones are made mainly of 

trabecular bone surrounded by a thin cortical shell. Trabecular bone plays primarily a 

metabolic role and is present in long spicules called trabeculae that are oriented along lines of 

principal stresses (Wolff’s law [3]), thus providing further mechanical strength to bone.  

 Bone is a dynamic tissue that adapts to environmental stimuli, particularly 

mechanical loads, by resorbing or forming bone. Bone tissue is composed mainly of 

osteoblasts, osteocytes, and osteoclasts [2]. Osteoblasts are cells of the mesenchymal lineage, 

derived specifically from osteoprogenitor cells. The major sources of these cells are the bone 

marrow, periosteum, and the surrounding soft tissue [4]. Osteoprogenitor cells play two 

primary roles in bone homeostasis: (i) secretion of cytokines to recruit additional MSCs and 

pre-osteoblasts, and (ii) differentiation and production of mineralized matrix, leading to the 

formation of bony tissue [5]. During early osteogenic differentiation, cells secrete factors 

such as alkaline phosphatase (ALP) and collagen type I, and as they become mature 

osteoblasts they produce proteins including osteopontin (OPN) and osteocalcin (OCN). The 

secreted proteins and ground substance make up the organic portion of bone matrix, 

referred to as osteoid, which is subsequently mineralized when calcium and phosphate 

precipitates form hydroxyapatite crystals. 

 Collagen type I comprises 90% of the organic portion of bone extracellular matrix 

(ECM) [6] and confers bone its tensile strength [7]. Besides comprising collagen type I, bone 

matrix also serves as a reservoir for other proteins and growth factors that participate in 

bone maintenance. One such growth factor (discussed in detail in Section B.3) is bone 

morphogenetic protein-2 (BMP-2), which is chemotactic to many cell types and was first 

discovered as an inducer of osteogenesis in the 1960s [5]. Hydroxyapatite is the main 

inorganic component of bone matrix. The high compressive strength of bone is due to the 
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presence of hydroxyapatite crystals within collagen fibrils as well as the alignment of the 

collagen fibers within the matrix.  

 Once osteoblasts are surrounded by bone matrix, they are referred to as osteocytes. 

Osteocytes make up 90-95% of all bone cells and are located within lacunae and 

communicate via gap junctions [8]. Although once thought to be quiescent cells, osteocytes 

are now recognized as the bone cells chiefly responsible for sensing mechanical stimuli and 

responding via bone formation and/or resorption [9]. 

 Osteoclasts are large, multinucleated cells of hematopoietic origin that reside on 

bone surfaces. Active osteoclasts migrate to resorption pits called Howship’s lacunae where 

they resorb bone. Within Haversian canals, osteoclasts comprise the leading edge (cutting 

cone) of bone resorption, followed by osteoblasts secreting osteoid. The coupling 

mechanism by which osteoclasts and osteoblasts communicate during bone remodeling is 

described in detail below. 

 On the microscale, bone can be classified by the degree of organization of the 

collagen fibers [10]. Woven bone is characterized by disorganized collagen fibers that are laid 

down quickly. After a fracture, woven bone is the first type of bone to form. In contrast, 

lamellar bone is composed of parallel collagen fibers within concentric sheets called lamellae, 

with the fibers alternating their orientation from one lamella to the next. Due to its highly 

organized structure, lamellar bone has greater mechanical integrity than woven bone. 

Regardless of the mechanism by which bone develops (endochondral or intramembranous 

ossification, discussed below), woven bone forms first and is subsequently remodeled into 

lamellar bone.  
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Bone Development and Remodeling 

 The two classes of bone development, or ossification, are known as endochondral 

ossification and intramembranous ossification. Endochondral ossification is the primary 

mechanism by which long bones develop [11]. During endochondral ossification, bone is 

formed from a cartilage template composed of proliferating and hypertrophic chondrocytes 

that then becomes calcified. The chondrocytes undergo apoptosis and are cleared by 

invading osteoclasts, and new bone matrix is secreted by osteoblasts. At the point of skeletal 

maturity (18-25 years), the cartilage in the growth plates of bones has been replaced entirely 

by bone tissue. Intramembranous ossification is the process by which flat bones (e.g., skull 

bones, scapulae) develop. In this process, bone is formed directly from mesenchymal tissue 

instead of from cartilage [10]. High concentrations of osteoprogenitor cells differentiate into 

osteoblasts, which secrete bone matrix. Typically, bone healing after injury involves both 

endochondral and intramembranous ossification [12]. 

 Once bone tissue is present, it is constantly resorbed and formed in a process known 

as remodeling. Every year, approximately 10% of the adult skeleton (by mass) undergoes 

remodeling [13]. As a result of daily loading of bone, microcracks in osteocytes cause the 

secretion of soluble paracrine factors that recruit osteoclasts to resorb the damaged bone. 

Osteoblasts and osteoclasts together form structures known as basic multicellular units 

(BMUs) that orchestrate both bone development (modeling) and remodeling. In short, 

receptor activator of nuclear factor kappa-B ligand (RANKL) on the surface of an osteoblast 

binds to RANK on an osteoclast, activating the osteoclast. Once active, the osteoclast forms 

a tight seal with the bone surface and begins resorbing bone, releasing factors from the 

matrix (e.g., BMPs, transforming growth factor-beta (TGF-β)) that recruit osteoprogenitor 

cells to the resorption site. These cells then differentiate into osteoblasts, which form new 
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bone. In a negative feedback loop, once the matrix is mineralized, osteoblasts regulate the 

bone remodeling process by secreting osteoprotegerin (OPG), a decoy receptor that binds 

RANKL, preventing its interaction with RANK and thus inhibiting osteoclast activation. By 

continuously remodeling itself, bone tissue maintains a state of equilibrium, except during 

growth and disease. Osteoporosis is the state whereby more bone is resorbed than is formed; 

conversely, osteopetrosis involves bone formation that outpaces resorption [14].  

2.2 Bone Regeneration 

Clinical Motivation 

Musculoskeletal injuries account for two-thirds of all injuries each year in the United 

States [15, 16]. Of the 6.3 million bone fractures that occur annually in the United States, 

over 500,000 require bone grafts, accounting for approximately $2.5 billion in medical 

expenses [17]. Substantial loss of bone tissue caused by traumatic injury or tumor resection 

presents a significant clinical challenge for reconstruction. Among these injuries, critically 

sized bone defects are particularly difficult to repair and often require subsequent surgeries 

or result in a non-union or amputation. An estimated 185,000 persons per year undergo 

amputation of a limb [18]. Currently, the gold standard of care for critically sized bone 

defects is autograft harvested from the iliac crest, but the limited graft tissue available and 

associated donor site pain and morbidity [19] warrant the study of more effective 

therapeutics. 

Bone tissue has an innate capacity to regenerate after injury. Thus, tissue engineering 

and regenerative medicine approaches, based on the delivery of osteoinductive cells, growth 

factors, and matrix materials, have emerged as a promising alternative to autograft treatment. 

One clinically viable tissue engineering strategy is to deliver an osteogenic growth factor 
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within a biomaterial scaffold to the site of injury and thereby stimulate the endogenous bone 

repair process [20]. A critical factor in the effectiveness of the carrier is the ability to provide 

the necessary temporal and spatial presentation of the growth factor for sufficient 

recruitment and differentiation of endogenous stem cells [20]. In particular, the surrounding 

soft tissue serves as a crucial source of stem cells, especially for large bone defects that result 

in significant loss of periosteum and marrow tissue [21]. 

As members of the transforming growth factor-beta (TGF-β) super family of growth 

factors, bone morphogenetic proteins (BMPs) promote migration of many cells including 

osteoprogenitors [22], and osteogenic differentiation of mesenchymal stem cells [23, 24]. 

Both BMP-2 and BMP-7 are approved by the Food and Drug Administration (FDA) for 

clinical use [25, 26], and BMP-2 has been widely studied as an osteoinductive protein for 

bone regeneration. Although BMP-2 delivered on an absorbable collagen sponge has shown 

success in long bone healing and spinal fusion [27, 28], concerns regarding the use of 

supraphysiological doses and associated complications including heterotopic mineralization 

and inflammation [29] necessitate the development of biomaterial carriers that promote 

greater regenerative efficacy with lower doses of growth factor [30]. 

Biomaterials in Bone Tissue Engineering 

Alginate Hydrogels 

 A critical factor in the effectiveness of the biomaterial carrier is its ability to provide 

the necessary temporal and spatial presentation of the growth factor for sufficient 

recruitment and differentiation of endogenous stem cells [20]. Hydrogels as a class of 

biomaterials possess many advantages for growth factor delivery, including biocompatibility, 

ease of growth factor incorporation, and tunable degradation rates. In particular, alginate 
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hydrogels have been used as delivery vehicles for a multitude of proteins, including BMP-2 

[31-34]. As alginate is a plant polysaccharide, it does not degrade enzymatically in animal 

species because they lack alginases [34]. Instead, alginate degrades slowly and in an 

uncontrolled manner due to the dissociation of ionic crosslinks [35]. Release of growth 

factors from unmodified alginate relies mainly on diffusion. However, modifying the 

structure of the alginate polymer can alter the rate of degradation of alginate, thus allowing 

more control over protein release [36]. 

 Modification techniques utilized to increase alginate degradation rate and its 

associated growth factor release include gamma-irradiation and partial oxidation. Gamma-

irradiation lowers the molecular weight of alginate and allows for improved cellular 

infiltration and tissue healing compared to non-irradiated alginate [34, 37]. Irradiated alginate 

hydrogels have been used to deliver proteins such as BMP-2 and facilitated functional 

regeneration in a critically sized rat femoral defect model [38-41]. Further, irradiated alginate 

hydrogels surrounded by a PCL nanofiber mesh provided a more sustained release of BMP-

2 and augmented bone regeneration compared to the clinically-used collagen sponge in a rat 

model [39, 40]. However, a portion of the alginate material was shown to persist at 30 weeks 

and may have hindered integration of the newly formed bone tissue [42]. Partial oxidation, 

whereby a small percentage of the uronate residues are oxidized, allows the polymer chains 

to be more susceptible to hydrolysis and increases the degradation rate in vitro [43-45]. Unlike 

the degradation of unmodified alginate, oxidized alginate breakdown occurs primarily via 

hydrolysis, specifically at the oxidized sugar residues [43]. Oxidation of the alginate creates a 

more open-chain structure while maintaining the ionic cross-linking capacity [44] and 

biocompatibility of the alginate [43]. 
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 Scaffold degradation is a crucial regulator of not only growth factor retention but 

also extracellular matrix deposition [46]. As the scaffold degrades, space for new bone is 

created. As such, the rate of scaffold degradation would ideally be similar to the rate of new 

tissue formation to allow for successful coalescence of the newly formed bone. In previous 

subcutaneous implant studies, irradiation of the alginate led to a greater amount [34, 37] and 

superior quality [37] of bone tissue compared to non-irradiated alginate. Furthermore, 

oxidized alginate hydrogels facilitated an increase in cellular infiltration and matrix formation 

subcutaneously [44], and mitigated tissue loss in a mouse hind limb ischemia model [45]. 

Collagen Sponge Scaffolds 

 As collagen is a primary constituent of the ECM, collagen-based biomaterials are one 

of the most common classes of natural biomaterials used in tissue engineering applications. 

In the clinic, absorbable collagen sponge (ACS) scaffolds of bovine origin are approved for 

use in spinal fusions, open tibial fractures, and non-unions as carriers of rhBMP-2 and 

rhBMP-7 [25, 26]. One of the benefits of collagen scaffolds is their ability to be 

enzymatically degraded, and the time line of degradation can be extended by, for example, 

physical or chemical crosslinking of the scaffold [47, 48]. However, a major limitation of 

growth factor delivery via collagen sponge is the rapid release of growth factor. It has been 

reported between 40-90% of the loaded growth factor is released in an initial burst pattern 

[25, 29, 39, 49]. Despite this drawback, collagen scaffolds continue to be used often for the 

regeneration of bone in the clinic.  

Extracellular Matrix-Derived Materials 

Native ECM materials such as amniotic membrane and small intestinal submucosa 

(SIS) represent a class of naturally derived biomaterials already employed in the clinic for 
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tissue healing applications. With their intrinsic structural properties (proteins, 

glycosaminoglycans (GAGs), adhesive ligands, etc.) and ability to bind growth factors, these 

natural scaffolds provide an environment beneficial for resident and recruited cells [50, 51]. 

 Amniotic membrane was used as early as 1910 for skin grafting [52] and has been 

used successfully for the regeneration of many tissues, including cornea [53, 54], tendon [20], 

and cartilage [55]. The amniotic membrane is a bioactive ECM composed of an epithelial 

layer, a basement membrane, a thick fibrous layer (fibroblasts within loosely crosslinked 

collagen, glycoproteins, and proteoglycans), and avascular connective tissue [56, 57]. 

Amniotic membrane contains large amounts of collagens type I and III and hyaluronan [58-

60], as well as many growth factors, inflammatory mediators [51, 61], and angiogenic 

cytokines [62]. Some of the many factors present in the tissue include platelet-derived 

growth factors (PDGFs), transforming growth factor-beta 1 (TGF-β1), basic fibroblast 

growth factor (bFGF), and granulocyte colony-stimulating factor (GCSF), as well as 

interleukin-4 (IL-4), IL-6, IL-8, and IL-10 [51]. 

 Although amniotic membrane materials are being increasingly used clinically, few 

studies have investigated the mechanisms behind the positive effects that result from their 

use. Cells harvested from amniotic membrane have been shown to express 

immunosuppressive factors such as IL-1 receptor antagonist (IL-1Ra) and IL-10 [63]. 

Additionally, Lindenmair et al. demonstrated the osteogenic potential of amniotic membrane 

tissue in vitro [64]. Besides the limited knowledge on mechanisms of action of the amnion, 

processing of the graft materials varies and is often not standardized. One patented 

procedure (PURION®) for amnion/chorion involves gentle cleansing, lamination of the 

amnion and chorion, dehydration, and devitalization (leaving cellular debris) [65]. Recently, 

amniotic membrane sheets processed by this method greatly improved the healing of 
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diabetic foot ulcers compared to the clinical standard treatment [66], and micronized, 

injectable amniotic membrane was shown to slow the progression of osteoarthritis in a rat 

model [67].  

SIS is one of the most commonly used ECM materials, comprising a dense collagen 

network (mainly types I, III, and VI) [68], glycoproteins, GAGs, and a cocktail of bioactive 

growth factors [69] that contribute to the scaffold’s angiogenic [70], chemotactic [71], and 

immunosuppressive [72, 73] roles. Typically, SIS processing involves physical removal of the 

outer layers (leaving the submucosa and adjoining layers) followed by decellularization [74]. 

SIS was first used clinically in the 1960s as autograft or allograft tissue to replace 

dysfunctional vasculature [75]. Today, SIS grafts are primarily decellularized, porcine-derived 

materials, many of which are approved for clinical use and have had successful outcomes in 

the treatment of a variety of damaged tissues and diseases. For example, although limited 

mostly to case studies, CorMatrix© has been shown to function in the repair of cardiac 

tissues [76, 77]. In some cases, however, augmentation of diseased tissue with SIS had no 

benefit, or resulted in deleterious effects. Similarly to amniotic membrane, SIS formulations 

have been tailored for different uses, including micronized SIS for cell delivery in a murine 

wound healing model, [78] and SIS gel for cardiac repair after myocardial infarction in the 

mouse [79]. For an in-depth review of SIS, see Andree et al. [50]. Despite progress towards 

the characterization of SIS materials, the large degree of biological variability of native 

matrices such as these warrants improvements of standardized processing methods. 

Evaluating the biocompatibility, as well as biological and mechanical function of 

ECM materials post-processing is crucial for improving the biointegration and remodeling of 

these scaffolds. In particular, few studies have examined the host response to ECM-derived 

biological materials. Allogenic and xenogenic ECM materials, even after decellularization, are 
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capable of eliciting an immune response due to the presence of ECM proteins, which have 

been shown to stimulate the migration of neutrophils and macrophages [80-82]. Differences 

in the inflammatory profiles resulting from the use of noncrosslinked RestoreTM SIS (pro-

healing M2 macrophages) and crosslinked CuffPatchTM SIS (pro-inflammatory M1 

macrophages) have been observed in a rat abdominal wall defect model [83]. 

Synthetic Materials 

In some cases, the addition of synthetic materials to natural scaffolds can allow for 

more control over structural properties, while taking advantage of the innate benefits 

provided by the endogenous scaffold [84]. As the provisional ECM during the natural 

healing cascade, fibrin is a well-characterized, natural and pro-angiogenic biomaterial 

explored in a variety of tissue engineering applications. Commercial fibrin products 

traditionally require high fibrinogen and thrombin concentrations (at least an order of 

magnitude higher than physiologic levels) for mechanical stability. However, this leads to 

faster polymerization and a denser fibrin network, which limits cell infiltration [85]. The 

native biology of fibrin polymerization, specifically fibrin knobs which have inherent binding 

affinity to fibrin holes, can be harnessed and modified to provide control over the resulting 

structural, mechanical, and degradation properties. In particular, augmentation of fibrin 

knobs with synthetic, poly(ethylene glycol) (PEG)-based functionalities led to altered 

polymerization by engagement of hole ‘b’ with PEGylated knob ‘B’ units. The resultant 

fibrin hydrogels exhibited greater mechanical strength and slower enzymatic degradation, yet 

surprisingly, enhanced porosity (and correspondingly, diffusivity) [86]. 

Synthetic hydrogel materials have also served as effective carriers of BMP-2 for bone 

tissue regeneration. In particular, PEG-based hydrogels modified with matrix 

metalloproteinase (MMP) cleavable linkages were used to delivery BMP-2 and demonstrated 
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improved cranial defect healing compared to BMP-2 delivery via collagen sponge [87, 88]. 

Similar results were observed in a mouse radial defect model, where enhanced bone 

regeneration occurred with MMP-degradable PEG-maleimide hydrogels loaded with BMP-2 

compared to collagen sponge carriers [89]. For certain applications, synthetic scaffolds may 

be advantageous over natural materials because of the precise control and reproducibility of 

material properties.  

Growth Factor Delivery 

 Tibial fractures have a 10-30% rate of non-union, with even higher rates (50%) in 

open tibial fractures [90, 91]. To treat these challenging injuries, tissue engineering strategies 

such as the delivery of osteogenic growth factor(s) within a biomaterial scaffold to the site of 

injury are being explored, with the goal of harnessing the bone healing capacity of the 

endogenous stem cells [20]. Numerous growth factors with osteoinductive properties, 

including BMPs, TGF-β1, PDGF, and vascular endothelial growth factor (VEGF), have 

been examined for the treatment of bone defects [25, 92]. The addition of BMP has been 

shown to significantly improve the success rates in tibial non-unions compared to autograft 

tissue alone [91]. Even when a combination of bone grafts, ACS, or bulking agents was 

applied, BMP-2 augmented the healing outcomes. Furthermore, incorporating higher doses 

of BMP-2 led to improved bone regeneration in canine tibial and ulnar segmental defect 

models [93, 94]. However, the lack of spatial and temporal control over growth factor 

delivery can lead to adverse systemic effects and/or incomplete healing due to insufficient 

concentration of growth factor at the injury site [95]. Also, growth factor use is costly, 

particularly with the supraphysiological doses often used. 
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Bone Morphogenetic Protein-2 (BMP-2) 

 As members of the TGF-β superfamily of growth factors, BMPs are highly 

conserved, potent osteogenic proteins. More than twenty BMPs have been identified to date, 

with diverse functions in many developmental processes including embryogenesis, skeletal 

development, and hematopoiesis [96]. BMPs were initially isolated from decellularized, 

demineralized bone matrix [5, 97] and were found to initiate the formation of cartilage and 

bone in vitro and ectopically [98-100]. In particular, BMP-2 has been widely studied as an 

osteoinductive protein for bone regeneration, as it and BMP-7 are currently approved by the 

FDA for clinical use [25, 26]. 

 BMP-2 is a dimeric protein that plays a role in both bone development and post-

natal fracture healing [101]. One function that BMP-2 serves is promoting chemotactic 

migration of many cells including osteoprogenitors [22]. Additionally, BMP-2 stimulates 

osteogenic differentiation of mesenchymal stem cells by binding to cell surface receptors, 

which initiates the activation of downstream signaling pathways via phosphorylation of 

Smad 1/5/8, leading to the upregulation of transcription factors including runt related 

transcription factor 2 (RUNX2) and osterix (OSX), as well as other osteogenic genes 

previously mentioned, ultimately resulting in matrix secretion and mineralization [23, 102]. 

Of note, nanograms of endogenous BMPs are sufficient to induce osteogenesis, while it has 

been found that exogenous recombinant human BMPs are required at higher doses for 

efficacy [103-105].   

  It is well understood that the biological effects of a growth factor are a function of 

the dose of growth factor delivered. Although BMP-2 delivered on an absorbable collagen 

sponge (ACS) has shown success in long bone healing and spinal fusion [106, 107], the use 

of supraphysiological doses of BMP-2 has caused concern due to complications including 
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heterotopic mineralization and hematoma [29]. The consequences of supraphysiological 

doses of BMPs on bone healing and inflammation have not only been observed clinically but 

also examined in preclinical animal models. The inflammatory response following BMP-2 

and BMP-7 delivered subcutaneously or intramuscularly (IM) in collagen sponge revealed, 

with increasing BMP dose (1-20 µg), larger volumes of soft tissue edema and granuloma-like 

masses at both implantation sites and greater areas of inflammatory zones surrounding the 

IM implants [108]. However, regardless of BMP dose, soft tissue edema volumes peaked at 3 

hours in the subcutaneous implants and 2 days for the IM implants. Regarding orthotopic 

delivery of BMP-2, a dog model of critically sized radial defects treated with up to 2.4 mg of 

BMP-2 resulted in regenerated bone with cyst-like voids and impaired mechanical properties 

compared to bone formed with the lowest dose of BMP-2 (150 µg) [25]. Zara et al. 

determined a minimum threshold dose of BMP-2—11.25 µg in a critically sized rat bone 

defect model—at and above which poor bone quality and heterotopic mineralization were 

observed [109]. Likewise in a similar rat bone defect model, 10 µg BMP-2 resulted in 

improved bone healing compared to higher and lower doses [110]. The osteogenic effects of 

other growth factors (e.g., TGF-β, fibroblast growth factor-2) have also followed a biphasic 

dose response, whereby osteoinductive activity and bone healing peaked at mid-range 

concentrations [111-113]. Despite progress, our current understanding of the effects of 

BMP-2 dose has primarily been based on gross, tissue level analyses. Notably, the majority of 

the literature describing the biomolecular factors that participate in the bone healing process 

have been determined using fracture models, not critically sized bone defects [114]. 
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Inflammation in Bone Healing 

 After injury, the natural healing cascade involves a coordinated series of events: 

inflammation, proliferation/repair, and remodeling. Occurring immediately after injury, 

inflammation is characterized by increased blood vessel permeability, hematoma, and edema, 

along with the secretion of a multitude of cells and growth factors. This initial response is 

crucial for proper repair, as removal of the hematoma (especially days post-injury) led to 

impaired fracture healing in a rat model [115]. The highly regulated cascade of cytokines that 

constitute the acute inflammatory response subsequently participate in instructing the bone 

healing process [116-118]. Bone injury results in the expression of a wide array of pro-

inflammatory cytokines, which, along with many growth factors, particularly those from the 

transforming growth factor-beta (TGF-β) super family, result in inflammatory cell migration, 

angiogenesis, and mesenchymal stem cell (MSC) migration and differentiation [119-121]. For 

example, signaling molecules such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-

α), and stromal cell-derived factor-1 (SDF-1) promote MSC migration in vivo [92, 122-124]. 

Osteoprogenitor cells secrete BMPs [25, 119], which together with inflammatory cytokines 

further enhance MSC migration, proliferation, and differentiation [125-127]. Although levels 

of pro-inflammatory modulators are minimal during the subsequent proliferative/repair 

phase, their expression increases again during bone remodeling, when osteoblasts secrete IL-

1, IL-6, IL-11, and other factors that promote osteoclastogenesis [127]. At this point, 

osteoblasts and chondrocytes become the main source of pro-inflammatory factors [120]. 

 Typically, inflammatory cytokine expression levels return to baseline approximately 

one week post-injury [119-121]. In particular, MSCs have been found to play an 

immunomodulatory role during fracture healing [128]. However, the normal inflammatory 

response can be perturbed by factors such as trauma or disease [129, 130], and a significant 
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contributor to delayed bone healing or eventual non-union is an unresolved inflammatory 

response. For example, heightened and prolonged inflammation was associated with 

impaired bone healing in a sheep osteotomy model [131]. Although the pro-inflammatory 

cytokines IL-6 and TNF-α were found to be necessary for bone healing in murine models 

[132, 133], prolonged exposure to these molecules was associated with impaired bone 

volume and function [134-136]. Osteoinductive factors such as BMP-2 also play key roles in 

many signaling pathways related to inflammation. BMP-2 induces chemotaxis of 

inflammatory cells, namely lymphocytes, monocytes, and macrophages [137]. Additionally, 

BMP-2 supports osteoclast survival and differentiation through the enhancement of 

RANKL [138, 139]. Recently, Lee et al. determined that BMP-2 and BMP-7 induced an 

increase in IL-6 production in human promonocytic leukemia THP-1 cells over cells 

incubated with lipopolysaccharide alone, suggesting BMPs may have a more direct role in 

promoting inflammation [108]. 

Heterotopic Ossification 

 Heterotopic ossification is the process whereby bone formation occurs in 

nonosseous tissue, often causing pain and impaired mobility. Histologically and 

biochemically, heterotopic bone “lesions” are indistinguishable from orthotopic bone [140, 

141]. The most debilitating form of heterotopic ossification in humans is the rare genetic 

disorder fibrodysplasia ossificans progressiva (FOP), which is caused by a mutation in a 

receptor for BMP type-I [142]. More commonly, heterotopic bone forms as a result of 

trauma such as acetabular or elbow fracture, total hip arthroplasty, burn, or injury to the 

brain or spinal cord [143]. In particular, heterotopic ossification caused by combat-related 

injuries has become a more prominent occurrence from military operations in the Middle 
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East [144]. Treatment options are limited to the removal of heterotopic bone by surgery, but 

repeated surgeries to debride the tissue have been associated with recurrence of heterotopic 

ossification. Prophylactic alternatives include radiation therapy and administration of 

nonsteroidal anti-inflammatory drugs (NSAIDs). Though these can be effective in reducing 

or preventing heterotopic ossification [145], most combatants who have undergone complex 

traumatic injuries have multiple contraindications to these treatment options [144]. 

 Regardless of etiology, heterotopic ossification involves a complex coordination of 

cellular and molecular mechanisms. During heterotopic ossification, connective tissues are 

presumably replaced by bone tissue through a complex process involving inflammation, 

muscle cell death, fibrous tissue proliferation, angiogenesis, and ossification (often 

endochondral) [146]. Expectedly, local tissue environmental factors (e.g., source of BMP 

stimulus, ability to recruit osteoprogenitor cells and induce their differentiation into bone 

tissue) play a major role in the extent to which heterotopic ossification occurs [141]. For 

example, osteogenic genes were upregulated in wounds with heterotopic mineralization 

compared to wounds without [147]. Despite progress in understanding the role of BMP 

signaling pathways in heterotopic mineralization, the cells that contribute to the pathology 

remain under investigation. Due to the proximity of muscle progenitors/myoblasts to bone 

and their ability to differentiate down the osteogenic lineage when exposed to BMP-2 [148], 

these cells may contribute directly to heterotopic bone formation. Muscle-derived progenitor 

cells from wounds that subsequently developed heterotopic bone were present in greater 

numbers and exhibited increased osteogenic differentiation compared to cells from wounds 

that did not form heterotopic bone [149]. However, Lounev and colleagues, using two 

mouse models involving intramuscular BMP-2 injection or muscle injury via cardiotoxin 

injection, found that muscle satellite cells comprised a very minimal portion of the 
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heterotopic bone, while endothelial precursor cells contributed significantly to all three 

stages of heterotopic ossification (fibroproliferative, chondrogenic, and osteogenic) [150]. 

Furthermore, their findings suggested both dysregulation of BMP signaling and an 

inflammatory environment are necessary for heterotopic ossification to occur. Inflammatory 

cells of hematopoietic origin have been shown to contribute to heterotopic ossification [151, 

152]. Moreover, elevated levels of inflammatory cytokines both locally and systemically were 

associated with the development of heterotopic mineralization following combat injury 

[153], suggesting that local and circulating factors play a role in heterotopic bone deposition.  
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III. OXIDIZED ALGINATE FOR BMP-2 DELIVERY3 

3.1 Abstract 

 Autograft treatment of large bone defects and fracture non-unions is complicated by 

limited tissue availability and donor site morbidity. Polymeric biomaterials such as alginate 

hydrogels provide an attractive tissue engineering alternative due to their biocompatibility, 

injectability, and tunable degradation rates. Irradiated RGD-alginate hydrogels have been 

used to deliver proteins such as bone morphogenetic protein-2 (BMP-2), to promote bone 

regeneration and restoration of function in a critically sized rat femoral defect model. 

However, slow degradation of irradiated alginate hydrogels may impede integration and 

remodeling of the regenerated bone to its native architecture. Oxidation of alginate has been 

used to enhance the degradation of alginate matrices. The objective of this study was to 

evaluate the effects of alginate oxidation on BMP-2 release and bone regeneration. We 

hypothesized that oxidized-irradiated alginate hydrogels would elicit an accelerated release of 

BMP-2, but degrade faster in vivo, facilitating the formation of higher quality, more mature 

bone compared to irradiated alginate. Indeed, oxidation of irradiated alginate did accelerate 

in vitro BMP-2 release. Notably, the BMP-2 retained within both constructs was bioactive at 

26 days, as observed by induction of alkaline phosphatase activity and positive Alizarin Red 

S staining of MC3T3-E1 cells. From the in vivo study, robust bone regeneration was observed 

in both groups through 12 weeks by radiography, micro-computed tomography analyses, 

                                                

 

 

1 Portions of this chapter were adapted from Priddy L B, Chaudhuri O, Stevens H Y, Krishnan L, Uhrig B A, 
Willett N J, Guldberg R E. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long 
bone defects. Acta Biomaterialia, 10(10), 4390-4399, 2014. License No. 3603720780456 
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and biomechanical testing. Bone mineral density was significantly greater for the oxidized-

irradiated alginate group at 8 weeks. Histological analyses of bone defects revealed enhanced 

degradation of oxidized-irradiated alginate and suggested the presence of more mature bone 

after 12 weeks of healing. 

3.2 Introduction 

Alginate hydrogels have been used as delivery vehicles for a multitude of proteins, 

including BMP-2 [33, 34, 154, 155]. Alginate is a polysaccharide derived from algae that 

exhibits minimal binding interactions with cells and can be ionically crosslinked into 

hydrogels using divalent cations such as calcium [156]. Alginate does not degrade 

enzymatically [34], but alginate hydrogels can degrade slowly due to dissociation of the ionic 

crosslinks [157]. Scaffold degradation is a crucial regulator of not only growth factor release 

but also extracellular matrix deposition [46]. Ideally, as the scaffold degrades, space for new 

bone is created. As such, the rate of scaffold degradation should be similar to the rate of new 

tissue formation to allow for successful coalescence of the newly formed bone. In the case 

of alginate, various modification techniques, including gamma-irradiation and partial 

oxidation, have been utilized to enhance degradation of the scaffold [37, 43-45, 158]. 

Gamma-irradiation lowers the molecular weight of the alginate polymer chains, 

allowing the polymers to more readily dissociate from the alginate matrix [37]. Previously, 

irradiated alginate led to improved cellular infiltration and tissue healing compared to 

unmodified alginate [34, 37]. Irradiated alginate hydrogels have been used to deliver proteins 

such as BMP-2 and facilitated functional regeneration in our critically sized rat femoral 

segmental defect model [38-41]. In previous subcutaneous implant studies, irradiation of the 

alginate led to enhanced tissue infiltration, bone architecture, and bone area fraction [34, 37], 
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as well as greater mineral density and extent of alginate degradation [37] compared to 

unmodified alginate. 

Partial oxidation—whereby a small percentage of the uronate residues are oxidized—

allows the polymer chains to be more susceptible to hydrolysis and increases the degradation 

rate in vitro [43-45, 158]. Unlike the degradation of unmodified alginate, oxidized alginate 

breakdown occurs primarily via hydrolysis, specifically at the oxidized sugar residues [43]. 

Oxidation of the alginate creates a more open-chain structure while maintaining the ionic 

cross-linking capacity [44] and biocompatibility of the alginate [43]. In previous work, 

oxidized alginate hydrogels served as a carrier for chondrocytes [44] and growth factors 

(BMP-2 and TGF-β3) [158], and in both studies facilitated an increase in cellular infiltration 

and matrix formation subcutaneously compared to unmodified alginate. Additionally, 

oxidized alginate hydrogels loaded with vascular endothelial growth factor (VEGF) mitigated 

tissue loss in a mouse hind limb ischemia model [45]. Oxidized-irradiated alginate hydrogels 

were used recently for adipose stem cell delivery, promoting the formation of new adipose 

tissue subcutaneously [159]. In the present study, we utilized this same alginate modified by 

both irradiation and oxidation—i.e., a lower molecular weight and hydrolytically degradable 

alginate—as a growth factor delivery system for bone tissue engineering in an orthotopic 

model. 

 In our rat segmental defect model, irradiated alginate hydrogel surrounded by a PCL 

nanofiber mesh provided a more sustained release of BMP-2 and augmented bone 

regeneration compared to the clinically-used collagen sponge [39, 40]. However, a portion of 

the alginate material was shown to persist at 30 weeks and may have hindered functional 

remodeling of the newly formed bone tissue [42]. The interplay between carrier degradation, 

growth factor availability, and tissue ingrowth remains poorly understood. With these design 
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parameters in mind, this work evaluated the regenerative capacity of an oxidized-irradiated 

alginate hydrogel as a delivery vehicle for BMP-2 in a well-established rat long bone defect 

model. The objectives of the study were: (i) to compare BMP-2 release and bioactivity from 

irradiated alginate and oxidized-irradiated alginate, and (ii) to evaluate bone regeneration, 

alginate degradation, and quality of regenerated bone in vivo using these two alginate 

formulations. We hypothesized that the oxidized-irradiated alginate hydrogels would elicit an 

accelerated release of BMP-2, but degrade faster in vivo, facilitating the formation of higher 

quality, more mature bone. 

3.3 Materials and Methods 

Alginate hydrogel preparation 

Sodium alginate rich in guluronic acid blocks (MVG alginate, FMC BioPolymer) was 

used for all experiments. A low molecular weight alginate formulation was made by treating 

MVG alginate with gamma-irradiation, reducing its molecular weight from ~250 kDa to ~50 

kDa [45]. For preparation of the oxidized-irradiated alginate, irradiated alginate was exposed 

to sodium periodate, resulting in ~1% oxidation of the uronate residues and creating a 

hydrolytically labile polymer [44]. The alginates were functionalized with RGD peptide 

sequences (2 sequences per polymer chain) [37] to promote cell adhesion. Alginates were 

reconstituted in alpha-Minimum Essential Medium (αMEM, Gibco) and mixed with 

recombinant human BMP-2 (rhBMP-2, R&D Systems) in 0.1% rat serum albumin (RSA, 

Sigma). Hydrogels (2% (w/v) alginate) were prepared by mixing the alginate+rhBMP-2 

solution with calcium sulfate slurry (0.21 g/mL) at a ratio of 25:1 [40]. All hydrogels were 

incubated at room temperature for 30 minutes before further manipulation. Hydrogels used 

for in vivo delivery were stored at 4°C overnight. 



www.manaraa.com

 29 

Nanofiber mesh production 

 Nanofiber meshes were fabricated as previously described [40]. Briefly, poly(ε-

caprolactone) (PCL) was dissolved in a 90:10 volume ratio of hexafluoro-2-

propanol:dimethylformamide (Sigma-Aldrich) to a 12% (w/v) concentration. The solution (5 

mL) was electrospun onto a static collector plate for 5-6 hours. Using a VLS3.50 laser cutter 

(Universal Laser Systems) and CorelDRAW software, PCL sheets were cut into 12x19-mm 

rectangles, each with 24 1-mm diameter perforations, and rolled to form tubes 4.5 mm in 

diameter and 12 mm in length. Meshes were sterilized by ethanol evaporation overnight, 

rinsed three times in phosphate buffered saline (PBS, Cellgro), and stored in PBS. The 

meshes used in vivo were transferred to αMEM approximately 12 hours before surgery. 

rhBMP-2 release kinetics 

 To investigate the release kinetics of BMP-2, 2% (w/v) alginate hydrogels (n=8) 

containing 500 ng rhBMP-2 per 150 µL were injected into PCL nanofiber meshes and 

incubated at 37°C in 1 mL PBS, as previously described [40]. PBS was collected and replaced 

at 3 and 15 hours, and at 1, 2, 3, 5, 8, 14, and 26 days. The BMP-2 remaining in the 

constructs at 26 days was then eluted by rinsing vigorously with PBS. The BMP-2 not 

removed by PBS rinsing was eluted by incubation with 1 mL 0.1% sodium dodecyl sulfate 

(SDS) on a rocker plate for 1 hour. SDS was removed from solution by an SDS-Out™ 

Precipitation Kit (Thermo Scientific). The BMP-2 in solution was quantified using an 

enzyme-linked immunosorbent assay (ELISA, R&D Systems) according to the 

manufacturer’s protocol. 

 Using least-squares nonlinear regression analysis (SigmaPlot 11.0), the data of BMP-2 

retained in the constructs was fit to a three-term exponential decay function of the form 

y(t) = a * exp-λt + c 
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where y is the percentage of BMP-2 retained in the constructs at time t, λ is the decay 

constant, or rate of decay, a+c is the initial value of y (100% at t=0), and the function is 

asymptotic to y=c (t∞). 

Alkaline phosphatase induction assay 

 The bioactivity of released and retained BMP-2 was determined using an alkaline 

phosphatase (ALP) induction assay [160] (n=6–7). Mouse clonal pre-osteoblasts (MC3T3-

E1s, American Type Culture Collection) were seeded in 96-well plates at a density of 62,500 

cells/cm2 and incubated at 37°C, 5% CO2 in αMEM with 20% fetal bovine serum (FBS, 

Atlanta Biologicals) and 1% penicillin-streptomycin-L-glutamine (PSL, Invitrogen) for 6 

hours. Media was then replaced with a 1:1 volume ratio (200 µL total) of: (i) αMEM with 

2% FBS and 0.2% ascorbic acid 2-phosphate (AA2P); and (ii) PBS containing released BMP-

2 collected at 3 and 15 hours, and 1, 2, 3, and 5 days—or PBS/SDS containing BMP-2 

remaining in the constructs at 26 days (all samples in triplicate). As a positive control, 20 ng 

BMP-2 in PBS was used. Wells without BMP-2 served as a negative control. After 3 days of 

culture, MC3T3s were washed 3 times with Hank’s Buffered Salt Solution (HBSS, Thermo 

Scientific), fixed in 2% paraformaldehyde in 0.1 M sodium phosphate buffer for 10 minutes, 

and washed 3 times with sodium phosphate buffer (pH 7.4) for 3 minutes. MC3T3s were 

incubated with 100 µL/well of 7.6 mM p-Nitrophenyl Phosphate (p-NPP) in 50 mM 

Tris/HCl (pH 10.3) for 10 minutes at 37°C. The reaction was terminated by the addition of 

100 µL/well of 0.2 M NaOH, and the absorbance was read at 405 nm using a microplate 

spectrophotometer (PowerWave X5, Gen5 Software; Biotek Instruments, Inc.). Absorbance 

values were converted to ALP activity (nmol/hr) using the linear relationship between p-NP 
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standards (0-800 nmol/mL) and absorbance. Subsequently, mineralization in the MC3T3 

cultures was observed by staining with Alizarin Red S. 

Surgical procedure 

 Bilateral critically sized femoral segmental defects were created in 13-week-old 

female SASCO Sprague-Dawley rats (Charles River Laboratories) as previously described 

[38, 41]. Briefly, a radiolucent polysulfone fixation plate was affixed to the femur for limb 

stabilization, and an 8-mm defect was created in the mid-diaphysis of the femur. The defect 

was enclosed with a PCL nanofiber mesh and treated with 2 µg rhBMP-2 in 150 µL of 

irradiated alginate hydrogel or oxidized-irradiated alginate hydrogel (n=8). It was determined 

previously that 2 µg of rhBMP-2 promoted consistent bridging of the defects [39]. 

Subcutaneous injection of slow-release buprenorphine (Wildlife Pharmaceuticals) was 

provided for analgesia before surgery. Animals were euthanized by CO2 inhalation at 12 

weeks post-surgery. All procedures were approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee (IACUC). 

Radiography and micro-computed tomography 

 Bone regeneration was assessed qualitatively via radiography (Faxitron MX-20 

Digital, Faxitron X-ray Corp.) at 2, 4, 8, and 12 weeks post-operatively. New bone formation 

was quantified by micro-computed tomography (micro-CT; Viva-CT 40, Scanco Medical) at 

4, 8, and 12 weeks after surgery. The bone defect regions were scanned at medium resolution 

with a 38.9 µm voxel size, a voltage of 55 kVp, and a current of 145 µA. The volume of 

interest (VOI) for evaluation comprised the central 168 slices, or about 6.4 mm of the 8-mm 

defect region. A global threshold of 408 mg hydroxyapatite/cm3, corresponding to 

approximately 50% of the density of the native cortical bone, was applied to segment bone 

tissue. Noise was suppressed using a Gaussian filter (sigma = 1.2, support = 1). 
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Biomechanical testing 

 Torsional tests to failure were performed on femora (n=5) after harvest at 12 weeks 

post-surgery as previously described [41]. Briefly, the fixation plate was removed, the 

surrounding soft tissue was excised, and the native bone ends were potted in Wood’s metal 

(Alfa Aesar). Femora were displaced at 3° per second to failure (ELF 3200; Bose 

ElectroForce Systems Group). Maximum torque, toughness (energy to failure), and torsional 

stiffness (linear region of the torque-rotation curve) were calculated for each sample. 

Histological analyses 

 Histology was conducted on femora at 12 weeks (n=3) to identify newly formed 

bone and residual alginate within the defect region. Upon harvesting, femora were fixed with 

10% neutral buffered formalin for 48 hours and decalcified under gentle agitation in a formic 

acid solution (Cal-ExII, Fisher Scientific), which was changed three times per week for two 

weeks. After paraffin processing, 5-µm mid-sagittal sections were cut and stained with 

hematoxylin and eosin (H&E), Safranin O (for alginate) and Fast green (for tissue 

infiltration) [39], Masson’s trichrome (for bone) [109, 161], or Picrosirius red (for lamellar 

bone) [161]. Safranin O stained sections viewed by bright field microscopy were used for 

area quantification of alginate. The carboxyl groups in the alginate polymer contribute to its 

negative charge, which allows for staining with Safranin O [162, 163]. Although Safranin O 

also stains cartilage, chondrocytes are easily distinguishable from densely stained, acellular 

alginate. Picrosirius red stained sections were used for highlighting organized, lamellar bone 

under polarized light. The highly organized collagen of the native bone ends appeared 

green/yellow, so these colors were used to select mature, lamellar bone within the defect 

region [161]. For three consecutive sections per sample, five low magnification (10x) images 

from comparable areas within the bone defect region were used for automated image 
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analysis, for a total of 15 images per sample. The location of each image was determined 

using the nanofiber mesh (which bordered the defect on both sides) as a marker. Image 

locations were as follows: top left corner of defect, bottom right corner of defect, and three 

central images distributed equally along the vertical length of the defect. 

 A custom MATLAB script (MATLAB 7.11.0 (R2010b)) was employed for 

automated and unbiased measurements on 10x magnification images (15 per sample, n=3) of 

de-identified sections. For images from Safranin O stained sections, areas of alginate (red), 

tissue (blue), and background (white) were identified by converting the images to HSV (Hue, 

Saturation, Value) color space [164]. The indices of the color areas were used to create a 

binary representation from which the areas of the image occupied by the red stained alginate, 

blue stained bone and fibrous tissue, and white backgrounds were estimated. For analysis of 

each image, red alginate areas were calculated as percentages of total area and binned from 

0-100%. Alginate pieces constituting less than 1% of the total stained area were considered 

noise and excluded from analysis. This representation provided a comparison of the relative 

sizes of the residual alginate aggregates and served as a measure of alginate 

breakdown/fragmentation. 

 Similarly, for Picrosirius red stained images, the white colored tissue loci were 

demarcated by converting the image to YUV (luma and chrominance) and HSV color 

spaces. Subsequently, the original image, converted to HSV space, was used to identify loci 

of green/yellow color. Binary representations were built to calculate the relative areas of the 

respective colors. Additionally, a 50-pixel connectivity size filter (1.6 pixels/µm) was used to 

identify the larger contiguous areas in the green/yellow area binary representation. Mature, 

lamellar bone (green/yellow) area was calculated as a percentage of total stained area for 
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each image. For a more detailed description of histomorphometric analysis methods, see 

Appendix A.1.  

Statistical analyses 

 All data were analyzed in GraphPad Prism 5 (GraphPad Software, Inc.) and reported 

as mean ± standard error of the mean (SEM). Two-way repeated measures analysis of 

variance (ANOVA) was performed on cumulative BMP-2 release. Decay constant and BMP-

2 recovered from the constructs at 26 days were analyzed via t-tests. ALP activity of cells 

treated with released BMP-2 was evaluated using two-way ANOVA, while ALP activity of 

cells treated with construct-bound BMP-2 was performed by one-way ANOVA. Micro-CT 

parameters were evaluated using two-way repeated measures ANOVAs. For each ANOVA, 

a Bonferroni post-hoc test for pairwise comparisons was performed. Paired t-tests were 

performed on biomechanical data to evaluate differences between the two alginate 

formulations, while comparison to intact femora required additional (unpaired) t-tests. 

Histomorphometry of alginate area and lamellar bone area were analyzed by t-tests. A p-

value less than 0.05 was considered statistically significant.  

3.4 Results 

rhBMP-2 release kinetics 

The release of BMP-2 from irradiated and oxidized-irradiated alginate hydrogels 

loaded with 500 ng BMP-2 was assessed over 26 days. An initial burst release of BMP-2 

from both alginate types was observed (Figure 1A). Cumulative release was significantly 

greater for oxidized-irradiated alginate at days 2 and 3 (p<0.05). However, by day 5 these 

differences were no longer significant. Of the BMP-2 that was released (~20% of loaded), 

more than 95% was released by day 3 and day 8 for the oxidized-irradiated and irradiated 

alginates, respectively. The BMP-2 release data was also expressed as percent retained in the 
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constructs through 26 days, and was fit to a three-term exponential decay function (Figure 

1B) to determine the decay constant, or rate of decay λ. The decay constant was significantly 

greater for the oxidized-irradiated alginate hydrogels (p<0.05) (Figure 1C). 

Approximately 35% of the loaded BMP-2 remained in the constructs at 26 days as 

measured by vigorous washing with PBS and SDS (Figure 1D). A larger portion of the 

construct-bound BMP-2 was eluted during rinsing with PBS (~30% of loaded), as compared 

to the BMP-2 obtained from the SDS wash (~5% of loaded). In a separate experiment after 

3 weeks incubation with 500 ng BMP-2, significantly more BMP-2 was recovered from 

hybrid constructs (alginate+mesh) compared to either component alone (Figure 2), 

suggesting both components of the delivery system were necessary for prolonged binding of 

BMP-2. 
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Figure 1. Released and retained BMP-2. (A) Release kinetics of BMP-2 from alginate gels. 
Significantly more BMP-2 had been released from oxidized-irradiated alginate at days 2 and 3 
(*p<0.05). (B) Percentages of BMP-2 retained in the constructs over time were fit to 
exponential decay functions (denoted by _fit). (C) Decay constant λ was significantly greater 
for the oxidized-irradiated alginate (*p<0.05). (D) Approximately 35% of the BMP-2 was 
recovered from the constructs at 26 days.  
 

 

Figure 2. BMP-2 retained in PCL mesh and alginate. After 3 weeks in culture with 500 ng of 
BMP-2 initially, minimal BMP-2 remained in nanofiber mesh constructs (BMP-2 added to 
media) and alginate constructs (BMP-2 incorporated into hydrogel) compared to 
alginate+mesh constructs (*p<0.01). 
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Alkaline phosphatase induction assay 

 Levels of ALP activity, an early marker of osteoblastic differentiation, were examined 

to evaluate the functional ability of the released BMP-2 to induce mineralization in MC3T3-

E1 cells after 3 days of culture. ALP activity was significantly enhanced for cells treated with 

BMP-2 released through 1 day for the irradiated group and through 15 hours for the 

oxidized-irradiated group compared to the negative control (no BMP-2) (p<0.05) (Figure 

3A). BMP-2 released at 1 day from irradiated alginate elicited significantly higher ALP 

activity compared to the oxidized-irradiated group at that time point (p<0.05). ALP activities 

after day 1 were negligible. Although minimal BMP-2 was released after 8 days, BMP-2 

remaining in both constructs at 26 days (obtained from PBS rinse) was bioactive, as 

indicated by ALP activity significantly greater than the negative control (Figure 3B). Minimal 

ALP activity was measured by the subsequent SDS wash (data not shown). Alizarin Red S 

staining of calcium deposits in these same MC3T3 cultures treated with PBS/BMP-2 

retained in the constructs at 26 days served as further evidence of BMP-2 bioactivity (Figure 

3C, D). 
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Figure 3. Bioactivity of released and retained BMP-2. (A) ALP activity was highest for 
MC3T3-E1 cells incubated with PBS/BMP-2 collected at 15 hr. Bioactivity of BMP-2 
released from irradiated hydrogels through 1 day, and from oxidized-irradiated hydrogels 
through 15 hr, was significantly greater than the negative control (***p<0.001, **p<0.01, 
*p<0.05). BMP-2 released from irradiated alginate at 1 day showed significantly higher ALP 
activity than BMP-2 from oxidized-irradiated alginate at the same time point (#p<0.05). (B) 
BMP-2 remaining in the constructs at 26 days was bioactive, as all groups were significantly 
greater than the negative control. (C-D) Alizarin Red S staining of calcium deposits in 
MC3T3 cultures treated with BMP-2 retained in the constructs at 26 days. Scale bar = 100 
µm. 
 

Radiography and micro-computed tomography 

 The in vivo comparison of bone regeneration with 2 µg BMP-2 in the two alginate 

formulations indicated similar, robust bone formation from radiographs and micro-CT. 

Radiographs at 2, 4, 8, and 12 weeks post-surgery revealed comparable bone formation for 

the irradiated alginate and oxidized-irradiated alginate groups (Figure 4). For both groups, 7 
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of 8 defects showed bridging of the defect site by 4 weeks, and all 8 defects were bridged by 

8 weeks, as is typical with this model and dose of BMP-2. 

 

Figure 4. Longitudinal radiographs of bone regeneration. Representative radiographs of 
defects treated with BMP-2 in irradiated alginate (top) or oxidized-irradiated alginate 
(bottom) at 2, 4, 8, and 12 weeks post-operatively. All defects showed complete bridging by 
8 weeks.   
 

 Micro-CT data at 4, 8, and 12 weeks post-surgery were consistent with the results 

from radiography. Bone volume increased over the course of the study for both groups but 

was not significantly different between the two groups at any time point (Figure 5A). Bone 

mineral density (BMD) at 8 weeks was significantly greater in the oxidized-irradiated alginate 

group (p<0.05, Figure 5B). The spatial distribution of BMD in a mid-sagittal slice within the 

defect region further demonstrated this difference at 8 weeks (Figure 5C). By 12 weeks, 

however, these differences were no longer significant.  
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Figure 5. Bone volume and mineral density over time. (A) Bone volume increased over time, 
but no differences were observed between groups. (B) Bone mineral density (BMD) also 
increased over time for both groups and was significantly greater in the oxidized-irradiated 
alginate group at 8 weeks (*p<0.05). (C) Density mapping of mid-sagittal cross-sections of 
newly formed bone in the central defect region further illustrated this higher density at 8 
weeks in the oxidized-irradiated alginate group. Scale bar = 1 mm. 
 

Biomechanical testing 

 Torsional testing to failure provided a measure of functional recovery of the newly 

regenerated bone at 12 weeks post-surgery. Data were also compared to historical data of 

age-matched, intact femora [40]. Maximum torque at failure was significantly attenuated in 

the irradiated alginate group compared to intact controls (p<0.05), while max torque for the 

oxidized-irradiated group was statistically equivalent to the irradiated group and control bone 

(Figure 6A). Toughness, or area under the torque-rotation curve to failure, was not different 
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between groups (Figure 6B). Torsional stiffness was similar between groups and significantly 

greater than intact controls for both groups (p<0.01, Figure 6C). 

 

Figure 6. Biomechanical properties of regenerated bone tissue. Functional assessment of the 
regenerated bone at 12 weeks. Dashed lines indicate mean values for historical naïve intact 
control bone [40]. (A) Maximum torque to failure was not significantly different between test 
groups. However, max torque for the irradiated alginate group was significantly lower than 
intact controls (*p<0.05). (B) Toughness, or energy to failure, was not different between 
groups. (C) Torsional stiffness for both groups was significantly greater than intact controls 
(**p<0.01). 
 

Histological analyses 

 Hematoxylin and eosin (H&E) staining of new bone (pink) and residual alginate 

(purple) showed distinct areas of bone and alginate in the irradiated group (Figure 7A), and 

co-localization of bone and alginate in the oxidized-irradiated group (Figure 7B). Masson’s 

trichrome staining revealed bone tissue (red) within the defect region (Figure 7C-D). The 

presence of globular fatty cells and marrow-like structures observed with both stains was 

indicative of physiological bone regeneration. 
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Figure 7. 12 week histology of mid-sagittal sections of bone defect tissue. (A, B) H&E 
staining revealed areas of new bone (pink, b) and residual alginate (purple, a), which 
appeared more interspersed/co-localized in the oxidized-irradiated group. (C, D) From 
Masson’s trichrome staining, bone tissue stained red (b). (A-D) Globular, marrow-like 
structures (m) suggested physiological bone healing. Scale bar = 100 µm. 
 

 Safranin O staining of the defect regions distinguished infiltrating bone tissue (blue) 

and residual alginate (red acellular areas) (Figure 8A). Notably, no chondrocytes were present 

in the bone defect region. Although a considerable amount of both alginate types remained 

in the defect area, the oxidized-irradiated alginate was more diffuse and fragmented than the 

residual irradiated alginate. Histomorphometry was used to quantify residual alginate as a 

percentage of total image area. The number of alginate pieces comprising 1-10% area was 

greater for the oxidized-irradiated group. However, the average count of larger alginate 

pieces (>10% area) was significantly higher for the irradiated alginate group (p<0.05, Figure 
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8B). Collectively, irradiated alginate occupied ~40% of total image area, while oxidized-

irradiated alginate occupied ~30% (Figure 8C). 

 

Figure 8. Histomorphometry of alginate in 12 week bone defect samples. (A) Alginate 
stained red (a) and newly formed bone stained blue (b) with Safranin O. Residual oxidized-
irradiated alginate was more diffuse and fragmented than irradiated alginate. (B) Frequency 
distribution of percent area of alginate pieces. Significantly more large (>10%) irradiated 
alginate pieces remained (*p<0.05). (C) Overall, irradiated alginate occupied ~40% of total 
area, while oxidized-irradiated comprised ~30%, although these differences were not 
statistically significant (p=0.0831). Scale bar = 100 µm. 
 

 Picrosirius red staining highlighted birefringent collagen under polarized light (Figure 

9A). While most of the collagen in the irradiated group was poorly organized woven bone, 

the oxidized-irradiated group appeared to contain more organized, lamellar bone (bright 

green/yellow). In both groups, woven bone (red) had formed in the available space created 
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by degraded alginate and had integrated with the residual alginate. From histomorphometric 

analysis, lamellar bone area as a percentage of total stained area was statistically equivalent 

between groups (Figure 9B). 

 

Figure 9. Histomorphometry of lamellar bone in 12 week bone defect samples. (A) 
Picrosiruis red staining viewed under polarized light highlighted organized, lamellar bone 
(bright green/yellow, arrows), which appeared more abundant in the oxidized-irradiated 
alginate group. (B) Quantification of lamellar bone as a percentage of stained area. Scale bar 
= 100 µm. 
 

3.5 Discussion 

Irradiated alginate has previously been used to deliver BMP-2 in our critically sized 

rat bone defect model, facilitating enhanced bone regeneration over the clinically used 

collagen sponge [39, 165]. However, a portion of the alginate material remained in the defect 

beyond the typical 12-week time course of healing. Since bone tissue formation and 

remodeling may be impeded by the presence of residual biomaterial at the injury site, 

understanding the timelines of protein release and biomaterial degradation is crucial for 

complete restoration of the form and function of bone tissue. In introducing oxidation as an 

additional structural modification of the alginate, the goal was to maintain the appropriate 

functionality (e.g., biocompatibility and injectability) of the irradiated alginate, while 

accelerating alginate degradation to augment bone tissue formation and maturation. In this 

work, an oxidized-irradiated alginate hydrogel served as an effective carrier for BMP-2 in a 
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critically sized segmental bone defect model, transiently improving mineral density of the 

bone tissue and enhancing alginate degradation at 12 weeks compared to a BMP-2-loaded 

irradiated alginate hydrogel. 

In contrast to the relatively uncontrolled release of growth factors from unmodified, 

non-degradable alginate, which relies primarily on diffusion, growth factor release from 

irradiated and oxidized alginate hydrogels is accelerated by degradation of the alginate matrix 

[44]. Previous work has employed irradiation and oxidation as methods to modify alginate to 

allow for more tunable protein release kinetics, and the effects of varying the degree of 

alginate modification have been thoroughly examined [37, 43, 45]. In this work, the release 

of BMP-2 from oxidized-irradiated alginate was accelerated compared to that from irradiated 

alginate, as measured by a larger decay constant (rate of release) for the oxidized-irradiated 

group. Others have observed a similar difference in release profiles of VEGF from oxidized-

irradiated alginate compared to irradiated alginate [45]. However, the accelerated release 

(greater amount at early time points) of BMP-2 from oxidized-irradiated alginate did not 

translate to an increase in ALP activity for pre-osteoblasts in vitro. Furthermore, beyond day 

1, ALP activity for BMP-2 released from both alginate types was negligible, suggesting that 

released BMP-2 did not maintain its bioactivity in vitro. ALP activity normalized to protein 

content revealed similar relationships between the groups (data not shown). The discrepancy 

between the ELISA and ALP results might be attributed to partial denaturation or 

misfolding of the protein once released, such that a portion of the BMP-2 was detected by 

ELISA but was not bioactive. Nonetheless, a burst release followed by minimal release of 

BMP-2 was observed from both alginates. Previously, in vivo BMP-2 release was tracked in 

our segmental defect model, and only ~10% of the protein remained at 21 days [39]. While 

Jeon et al. measured an increase in bone volume from a slow, sustained release of BMP-2 
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[166], others reported improved bone healing when an initial burst release was followed by a 

smaller sustained release [39, 167, 168].  

Although minimal amounts of BMP-2 were released from both alginate types after 

one week (as seen previously with irradiated alginate [40]), approximately one-third of the 

loaded BMP-2 remained bound to the alginate/PCL nanofiber mesh constructs and was 

bioactive through 26 days. The bioactivity of the bound BMP-2 may have been prolonged 

due to retention of the protein within the constructs. Maintenance, and even possible 

enhancement, of bioactivity of VEGF, another heparin-binding growth factor, has been 

observed in the presence of alginate [45, 169]. Furthermore, BMP-2 bioactivity has been 

sustained on the order of weeks using various delivery vehicles, including PCL [170]. 

However, to our knowledge, this is the first demonstration of prolonged bioactivity of BMP-

2 retained within alginate hydrogels, specifically an alginate/PCL mesh carrier. Likely, both 

the alginate hydrogel and the nanofiber mesh contributed to the binding of BMP-2, as BMP-

2 retention was enhanced in the hybrid delivery system compared to both the mesh only and 

alginate only constructs. However, the precise roles of each are yet to be delineated. The 

initial PBS wash removed most of the bound BMP-2, which we believe was loosely bound, 

while the remaining ~5% of loaded BMP-2 was eluted via SDS, which may have been bound 

more strongly to the mesh. An intermediate wash with sodium citrate (to dissolve the 

alginate) was performed, resulting in negligible amounts of BMP-2 measured. Alternatively, 

immediate hydrogel dissolution with sodium citrate at day 0 resulted in recovery of only 

~200 ng of BMP-2 (data not shown), so a significant portion of BMP-2 seemed to be lost in 

the preparation of the hydrogels. In both cases, approximately half of the loaded BMP-2 was 

accounted for. It is possible that both the initial burst release and the localized retention of 

BMP-2 in the constructs facilitated bone regeneration, the former by recruiting the initial 
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wave of osteoprogenitor cells to the defect site, and the latter by influencing the 

differentiation of osteoprogenitor cells once present within the defect space [168, 171]. 

Collectively, these findings suggest the bioavailability of BMP-2 for an extended time frame 

(~weeks) may be required for complete restoration of critically sized bone defects. 

The degradation of hydrogels used in bone tissue engineering should ideally act in 

concert with the formation of new bone, so that by the completion of the regeneration 

process, only native bone fills the defect space. The increased degradation rate of oxidized 

alginate hydrogels compared to unmodified alginate hydrogels and irradiated alginate 

hydrogels has been characterized in vitro [43-45]. Qualitatively, the residual oxidized-

irradiated alginate in the 12-week bone defect samples alginate appeared further degraded 

(less densely stained) than the irradiated alginate. Although no differences were observed in 

total alginate area, significantly fewer large fragments of oxidized-irradiated alginate were 

present. This difference in size distribution of residual alginate suggested that oxidation of 

irradiated alginate increased the degree of hydrolytic degradation. The more diffuse and 

fragmented oxidized-irradiated alginate may have allowed for an increase in cellular 

infiltration into the defect space, thereby promoting more rapid formation of organized, 

lamellar bone. Indeed, histomorphometry of lamellar bone area from Picrosirius red staining 

suggested a trend towards increased formation of lamellar bone in the oxidized-irradiated 

group. However, the multitude of factors contributing to the degradation of alginate in vivo 

makes understanding the role of each extremely difficult. In particular, a limitation of this 

work was the analysis of alginate degradation at a single time point (12 weeks); thus, the time 

course of alginate degradation in an orthotopic model remains unknown. 

The breakdown of the oxidized-irradiated alginate may have been accelerated as the 

material degraded due to greater cellular invasion into the defect space. The well-understood 
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role of the osteoprogenitor cells is two-fold: (i) secretion of cytokines to recruit additional 

mesenchymal stem cells and pre-osteoblasts, and (ii) differentiation and production of 

mineralized matrix, leading to the formation of bony tissue [5]. The cells’ ability to deposit 

matrix relies on the concomitant degradation of the scaffold, creating space for and 

promoting consolidation of the newly formed bone tissue [37]. In this study, bone mineral 

density was significantly greater at 8 weeks in the oxidized-irradiated group. However, 

enhanced fragmentation of oxidized-irradiated alginate did not translate into augmented 

bone repair, as biomechanical function at 12 weeks was similar between groups. The limited 

degree of bone remodeling in the rat species and/or the small sample size may have 

hindered our ability to detect differences in this study, possibly leading to a type II error. 

Despite the lack of differences in bone healing, we observed robust bone regeneration with 

both alginate formulations, suggesting early release and local retention of BMP-2 may be an 

advantageous approach for growth factor delivery. 

In conclusion, we observed prolonged bioactivity of BMP-2 at 26 days in vitro in both 

the irradiated and oxidized-irradiated alginate hydrogel/nanofiber mesh delivery systems. 

The oxidized-irradiated alginate hydrogel carrier for BMP-2 led to augmented mineral 

density, albeit temporarily, in a critically sized bone defect model. Furthermore, the residual 

oxidized-irradiated alginate was more diffuse and fragmented relative to the irradiated 

alginate at 12 weeks in vivo, although the hydrogels were not fully degraded at this time point. 

Thus, scaffold degradation remains a critical design parameter for evaluating the efficacy of 

growth factor delivery vehicles in tissue engineering. 
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IV. EFFECTS OF BIOMATERIAL IN HIGH DOSE BMP-2 

DELIVERY 

4.1 Abstract 

 Bone morphogenetic protein-2 (BMP-2) delivered on absorbable collagen sponge 

has shown clinical success in bone healing. However, complications associated with 

supraphysiological BMP-2 doses including heterotopic mineralization (bone formation in 

nonosseous tissue) and inflammation often cause pain and impaired mobility. These issues 

have prompted investigation into improved retention of growth factors for guided bone 

regeneration. The objective of this work was to evaluate the spatiotemporal effects of high 

dose BMP-2 as a function of delivery vehicle on bone healing. We hypothesized that an 

alginate delivery system would elicit a more localized mineralization pattern compared to the 

collagen sponge. Release kinetics of BMP-2 in vitro were accelerated with collagen sponge 

compared to alginate constructs. Critically sized rat femoral segmental defects were enclosed 

with a nanofiber mesh and treated with 30 µg rhBMP-2 in alginate hydrogel or collagen 

sponge. Bone regeneration was assessed longitudinally via radiography and micro-CT. Polar 

moment of inertia, maximum torque, and stiffness provided measures of the functional 

recovery of regenerated bone. Histology was conducted to further characterize the spatial 

distribution of bone. Total bone volume was significantly higher in the alginate group at 12 

weeks. Further, bone volume within the central defect region was significantly greater in the 

alginate group at 8 and 12 weeks. However, heterotopic bone volume was similar between 

groups. Histological analyses corroborated these findings and revealed mineralization outside 

the bone defect space for both delivery vehicles. Overall, this work recapitulated the 

heterotopic mineralization often observed with high dose BMP-2 delivery, and demonstrated 
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that the volume and distribution of BMP-mediated bone formation depend on delivery 

matrix. 

4.2 Introduction 

It is estimated that limb fractures account for more than 25% of the musculoskeletal 

injuries that occur annually (12.36 million). Of these injuries, approximately 5-10% suffer 

from delayed union or non-union, requiring multiple interventions that are very costly [110]. 

Although autograft remains the gold standard in clinical care, failure rates with bone grafts 

range from 13-35% [172]. Bone morphogenetic protein-2 (BMP-2) has emerged as an 

effective alternative or adjuvant to autograft tissue, demineralized matrices, or similar 

scaffolds in the treatment of bone defects based on extensive animal and clinical studies 

supporting its efficacy [25-28]. Roughly a quarter of the approximate 500,000 bone grafting 

procedures treat cases of trauma [172]. With rising numbers of high-impact and multi-tissue 

injuries in both military and civilian populations, and their potential complications like non-

union, BMP-2 therapy may offer an alternative whereby modest increases in surgical costs 

with the use of BMP-2 may lead to overwhelming socioeconomic benefits by avoiding the 

true economic burden of amputations, estimated at $400,000 throughout the patient’s 

lifetime [173]. 

The discovery of BMP-2 in decellularized, demineralized bone matrix led to the 

evolution of BMP-2 as a therapeutic target in bone regeneration [5]. Subsequently, animal 

models have used a wide range of doses in different scaffolds to regenerate bone defects 

[171]. BMP-2 injected intravenously has a physiological half-life of only 7-30 minutes and 

localizes to high flow areas including the liver and kidneys [174, 175]. Further, it is expected 

that a significant amount of locally delivered BMP-2 may be removed into the circulation 

and excreted [176]. Biomaterial scaffolds have therefore attempted to retain BMP-2 at the 
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site of delivery to prolong local bioavailability of BMP-2. For example, the absorbable 

collagen sponge (ACS) scaffold commonly used in the clinic releases BMP-2 over a period of 

days. Specifically, the ACS scaffold has been shown to retain 40-50% of the BMP-2 within 3 

to 4 days, and 10% 1 to 2 weeks after delivery [39, 49, 171, 177] both at a subcutaneous 

implant site [177] and in a critically sized femoral segmental defect [39]. This release profile is 

an improvement in comparison to that of BMP-2 delivery without a carrier, where the 

fraction of BMP-2 retained at the site of delivery sharply dropped to 10% within 3 to 4 days. 

It is thought that a biphasic release profile is beneficial in the chemotactic recruitment of 

progenitor cells to the site of delivery and subsequent differentiation of these cells to 

osteoblasts [171]. Observations by Brown et al. showing improved bone formation using a 

carrier with a biphasic BMP-2 release profile compared to only sustained release supports 

this hypothesis [178].  

Regardless of whether it is an ideal carrier, ACS has shown great efficacy as a BMP-2 

delivery vehicle for bone regeneration, and the variability in dose selection clinically could 

stem from the perceived higher needs in more challenging injury scenarios. The disparity in 

the physiological quantities of BMP-2 (picograms-nanograms) in the healing osteogenic 

environment and the supraphysiological quantities of recombinant human BMP-2 (rhBMP-

2) delivered locally (milligrams) as a therapeutic are well recognized [103-105]. The 

discrepancy has been attributed to both the lower activity of the rhBMP-2 compared to 

endogenous BMP-2, as well as its temporal bioavailability, which in turn is a function of 

delivery scaffold [39, 110, 179]. The rationale for the use of high doses of BMP-2, however, 

remains unclear. Yet spinal fusion surgeries have reported BMP-2 doses ranging from 20-

200 mg per patient delivered on ACS [180, 181]. Higher doses of BMP-2 were considered 

necessary for mineralized bridging in the absence of bone grafting or bulking agents, 
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suggesting the spatiotemporal distribution of BMP-2 may function in its efficacy [180]. Early 

evidence using polylactic acid (PLA) carriers showed no appreciable differences in healing or 

adverse effects in a canine spinal fusion model with BMP-2 doses ranging 40-fold in 

concentrations (58-2300 µg) [182], suggesting a threshold dose effect. However, subsequent 

studies have clearly demonstrated an incremental effect on bone regeneration with increasing 

BMP-2 dose in a canine model using an ACS scaffold [183]. Similarly, an incremental 

response to increasing dose of BMP-2 has been observed in a mouse calvarial defect model 

[184] and a rabbit radial defect model using a PLA scaffold (17-70 µg BMP-2) [185]. Thus, 

the wide range of release profiles, combined with anatomical and other pathophysiological 

differences in animal species and models, may explain the extent to which different 

biomaterial carriers promote osteoinduction at varying doses of BMP-2 [186]. 

The lack of a precise dose response relationship and limited data on the efficacy of 

high doses of rhBMP-2 notwithstanding, supraphysiological doses are relatively common in 

clinical use and have been linked to inflammatory reactions such as increased secretion of 

inflammatory cytokines [187], as well as heterotopic mineralization and diminished bone 

quality [109]. Few studies have examined the effects of high dose BMP-2 in the regeneration 

of large segmental bone defects, and the variable results regarding the extent of heterotopic 

ossification may be a function of the carrier used for BMP-2 delivery. The use of ceramic 

bulking agents when combined with BMP-2 on ACS did not produce heterotopic bone 

formation [93]. In contrast, BMP-2 on ACS in canine radial osteotomies (2.5 cm) led to the 

formation of cyst-like voids and heterotopic bone with higher doses of BMP-2 in a dose 

dependent manner (150-2400 µg) [183]. Furthermore, the lowest dose of 150 µg resulted in 

improved mechanical properties and gross structure on radiographs similar to normal bone. 

Using an apatite-coated PLGA delivery system to treat critically sized femoral segmental 
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defects in rats, Zara et al. have reported a dose of 2.25 µg of BMP-2 to be necessary for 

mineralized bridging of the defect, but found no dose dependent increase in bone volumes 

over a range of 2.25 µg to 45 µg [109]. More recently, in a study of early stage healing (4 

weeks) in critically sized femoral segmental defects in rats, a reduction in bone volume was 

reported with 20 µg of BMP-2 in ACS compared to 10 µg [110]. However, the quantification 

of heterotopic bone formation, its evolution over time, and its influence on ultimate 

biomechanical function remain unknown. Furthermore, the role of the scaffold in both 

heterotopic bone formation and the functional outcome of the healed segmental defect are 

yet unclear. 

Alginate hydrogel based delivery of BMP-2, with a burst release and a subsequent 

slower release profile, has shown remarkable successes in pre-clinical animal models of both 

ectopic bone formation and segmental bone defect regeneration [34, 37-41, 165, 188, 189]. 

Using a critically sized femoral segmental defect in the rat, we have previously demonstrated 

improved functional bone regeneration compared to autograft [190] and ACS [39, 165], 

specifically at lower doses and with better spatiotemporal control than commonly seen with 

ACS [39, 40, 165]. Though differences in degradation rate and hence BMP-2 release profile 

between alginate formulations did not show significant difference in mineralized bridging or 

mechanical properties, a larger distribution of more mature (lamellar) bone structures were 

found with the faster degrading alginate [189]. Nevertheless, the improvement in bone 

regeneration with alginate-based delivery in comparison to collagen sponge may be 

attributed to its more optimum BMP-2 release profile, likely resulting in a more sustained 

chemotactic gradient. The performance of this system with supraphysiological doses of 

rhBMP-2 has not yet been evaluated. Thus, the aim of this study was to provide a direct 

comparison of the effects of delivery system—clinically used ACS and the alginate hydrogel 
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based system—on heterotopic bone formation resulting from a supraphysiological dose of 

rhBMP-2. This work provides a quantitative description of heterotopic mineralization in 

segmental defects, elucidates the effects of heterotopic bone on mechanical properties, and 

ultimately serves as a platform for further mechanistic investigations. 

4.3 Materials and Methods 

Delivery vehicle preparation 

Irradiated sodium alginate was functionalized with the cell adhesion peptide RGD 

(FMC BioPolymer) and reconstituted in alpha-minimum essential medium (αMEM, Gibco). 

Recombinant human BMP-2 (rhBMP-2, Pfizer, Inc.) in 0.1% rat serum albumin (RSA, 

Sigma) in 4 mM HCl was added to the alginate solution, followed by a calcium sulfate slurry 

for crosslinking, which resulted in a 2% (w/v) hydrogel [40]. Alginate hydrogels contained 

30 µg BMP-2 per 150 µL hydrogel. Hydrogels were stored at 4°C overnight before use. 

 Collagen sponge cylinders (4 mm in diameter, 10 mm in length) were prepared from 

a manufacturer-sterilized collagen sponge sheet (Kensey-Nash Corp.) using a biopsy punch. 

rhBMP-2 was suspended in 0.1% RSA in HCl at a concentration of 30 µg/150 µL. The 

solution was added drop wise to the scaffold, which was incubated 15 minutes for sufficient 

absorption prior to use. 

 Nanoporous poly(e-caprolactone) (PCL) nanofiber meshes with 1 mm diameter 

perforations were produced as described previously [40, 189]. The nanofiber mesh was used 

to contain alginate hydrogel and collagen sponge. Alginate hydrogel was injected via syringe 

through the pores in the mesh. Collagen sponge was placed inside the mesh prior to the 

addition of the BMP-2 solution. Similarly prepared delivery vehicles were used for in vitro 

and in vivo experiments. 
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rhBMP-2 release kinetics 

 The in vitro release profile of BMP-2 from three constructs was assessed: alginate 

hydrogel surrounded by a mesh, collagen sponge surrounded by a mesh, and collagen 

sponge alone. BMP-2 release was evaluated through 26 days as previously described [189]. 

Constructs (n=6-7) containing 30 µg rhBMP-2 were incubated in 1 mL PBS, which was 

collected and replaced at 3 and 6 hours, and at 1, 2, 3, 5, 8, 14, and 26 days. Following the 

day 26 collection, a vigorous PBS wash was performed to capture residual BMP-2 remaining 

in the scaffolds. The BMP-2 released in the media at each time point was quantified using an 

enzyme-linked immunosorbent assay (ELISA, R&D Systems). The release data for each 

sample was converted to decay data (theoretical percentage retained in the constructs), which 

was analyzed by least-squares nonlinear regression analysis (SigmaPlot 11.0) as previously 

described [189].  

Alkaline phosphatase induction assay 

 An alkaline phosphatase (ALP) induction assay [160] was performed to measure the 

bioactivity of BMP-2 released through 5 days and BMP-2 remaining in the constructs at 26 

days (n=6-7) as previously described [189]. Briefly, mouse clonal pre-osteoblasts (MC3T3-

E1s, American Type Culture Collection) were cultured at high density (62,500 cells/cm2) for 

72 hours in equal volumes of αMEM and PBS containing released/retained BMP-2, 

supplemented with 0.1% ascorbic acid 2-phosphate (AA2P) and 1% fetal bovine serum 

(FBS, Atlanta Biologicals). MC3T3s were incubated with 7.6 mM p-nitrophenyl phosphate 

(p-NPP) in 50 mM Tris/HCl (pH 10.3) for 10 min at 37°C. After termination of the reaction 

with 0.2 M NaOH, the absorbance was read at 405 nm on a microplate spectrophotometer 

(PowerWave X5, Gen5 Software; Biotek Instruments, Inc.).  

 



www.manaraa.com

 56 

Surgical procedure 

 Unilateral critically sized (8-mm) segmental bone defects were created in the left 

femora of 13-week-old female SASCO Sprague-Dawley rats (Charles River Laboratories) as 

detailed previously [41]. After excision of bone, the defects were stabilized with a radiolucent 

polysulfone plate. Defects were treated with 30 µg rhBMP-2 in collagen sponge or irradiated 

RGD-alginate, surrounded by a PCL nanofiber mesh (n=9-11). For analgesia, slow-release 

buprenorphine (Wildlife Pharmaceuticals) was given subcutaneously prior to surgery. 

Animals were euthanized by CO2 inhalation. All procedures were approved by the Georgia 

Institute of Technology Institutional Animal Care and Use Committee (IACUC). 

Radiography and micro-computed tomography 

 Longitudinal bone regeneration was assessed via radiography and micro-computed 

tomography (micro-CT) through 12 weeks. Radiographs (Faxitron MX-20 Digital, Faxitron 

X-ray Corp.) were taken 2, 4, 8, and 12 weeks post-operatively for qualitative observation. 

 De novo mineral within and surrounding the defect space was quantified using micro-

CT (Viva-CT 40, Scanco Medical) at 4, 8, and 12 weeks. Parameters for scans were medium 

resolution, 38.9 µm voxel size, 55 kVp voltage, 145 µA current, and a global threshold of 386 

mg hydroxyapatite/cm3 (50% of the density of cortical bone) to segment newly formed bone 

tissue. A Gaussian filter (sigma = 1.2, support = 1) was used for noise suppression. Along 

the long axis of the femur, the central 136 slices (~5.3 mm) were evaluated. To clearly 

differentiate the new bone formation within the bone defect enclosed by the nanofiber mesh 

from the adjacent heterotopic bone outside the defect, two volumes of interest (VOIs) were 

evaluated. First, a 6-mm diameter VOI was used to characterize mineralization within and 

immediately bordering the outside of the mesh. This VOI corresponds to the typical VOI 

that is used for evaluating mineral formation following delivery of low dose BMP-2 in this 
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defect model [189]. Secondly, a large diameter VOI was used to encompass all bone 

formation within the thigh. The bone volume from the 6-mm VOI was subtracted from the 

bone volume from the corresponding large diameter VOI, and this bone was defined as 

heterotopic bone. 

 Femora were harvested at 12 weeks post-operatively for ex vivo micro-CT scans. All 

scan parameters were the same as above, except the voxel size was 21.5 µm. Here, the large 

diameter VOI, encompassing both the defect and heterotopic bone, comprised 495 slices 

(~10.6 mm) of the femur length and included part of the native bone ends that were 

subsequently subjected to torque during mechanical testing. The “Bone Midshaft” evaluation 

script (Scanco Medical) was used to calculate polar moment of inertia (pMOI) for each slice 

from CT scans [188]. All pMOI values within the sample were then averaged to provide a 

global measure of the distribution of bone with respect to the longitudinal axis of each 

sample. 

Biomechanical testing 

 Torsional testing of regenerated femora ex vivo was performed as previously 

described [41]. Briefly, after removal of the fixation plate and clearing of soft tissue, the bone 

ends were affixed in Wood’s metal (Alfa Aesar). Displacement-controlled loading at 3°/s 

was performed on femora (n=7-9) to failure (ELF 3200; Bose ElectroForce Systems Group). 

From torque-rotation curves, maximum torque and torsional stiffness were calculated. 

Histology 

 One sample from each group was harvested at 2 weeks, fixed, and embedded in 

optimum cutting temperature (OCT) compound to further characterize the distribution of 

newly formed bone, especially the heterotopic mineralization at the early phase of bone 

regeneration in the presence of a high dose of BMP-2. Mid-sagittal 7 µm non-decalcified 
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sections were obtained from the defect center by a tape transfer technique [191] (Section 

Labs, Hiroshima, Japan) on an NX-70 cryostat (Thermo Scientific). Mineral distribution was 

identified by von Kossa staining (5% silver nitrate under UV light for 40 minutes followed 

by a sodium thiosulfate wash), and slides were counterstained with eosin. Sequential sections 

were also stained with routine hematoxylin and eosin (H&E) for morphology comparisons. 

 Representative sections were also stained for the presence of macrophages using 

CD68, a pan-macrophage marker. Sections were washed in PBS to remove OCT, 

permeabilized with 0.5% Triton X-100, blocked, and stained overnight at 4°C with the 

primary antibody (Mouse anti-rat CD68 (AbD Serotec®), 1:100). Sections were then 

incubated with the appropriate fluorescent secondary antibody (Alexa Fluor® 488 Donkey 

anti-mouse (Life Technologies), 1:50) for 1 h at room temperature, washed in PBS, and 

stained with DAPI (4',6-diamidino-2-phenylindole, Life Technologies, 1:1000) for 2 min to 

identify nuclei. 

 One representative sample from each group was also harvested at 4 and 12 weeks, 

fixed using 10% neutral buffered formalin, and decalcified in a mild formic acid solution 

(Immunocal, Decal Chemical Corp.), which was changed three times a week for two weeks. 

Samples were paraffin embedded and sectioned using a tape transfer technique (Section 

Labs, Hiroshima, Japan). Sagittal sections obtained from the mid-defect region were 

deparaffinized and stained with H&E to characterize tissue morphology, safranin-O and fast 

green to identify alginate and cartilage, and Mallory’s modified aniline blue stain for 

identification of mature and immature osteoid, as described extensively for this experimental 

model [9, 22-25].  
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Statistical Analyses 

 Data were analyzed using GraphPad Prism 5 (GraphPad Software, Inc.) with a 

significance level of p<0.05 and reported as mean ± standard error of the mean (SEM). 

Release kinetics and longitudinal micro-CT parameters were assessed by two-way repeated 

measures analysis of variance (ANOVA). BMP-2 recovered from the constructs and decay 

constants were analyzed by one-way ANOVA. ALP activity of cells cultured with released 

and retained BMP-2 was evaluated using two-way ANOVA. Post-hoc pairwise comparisons 

for each ANOVA were performed using the Bonferroni method. Biomechanical properties, 

including pMOI from micro-CT analyses, were evaluated using Student’s t-tests. 

4.4 Results 

rhBMP-2 release kinetics 

The cumulative release of BMP-2 did not differ statistically among the construct 

groups, though the initial burst release from the collagen sponge groups were higher and 

occurred earlier than that from the alginate. The initial burst release from the collagen 

sponges, irrespective of the presence of the enveloping mesh, occurred within a day, while 

that from the alginate occurred between 2 and 5 days (Figure 10A). Though not significantly 

different, the presence of the mesh around collagen sponge appeared to retard BMP-2 

release after the initial burst. The apparent retained quantity of BMP-2 in the alginate 

constructs had a slower rate of decay than collagen, as determined by non-linear regression 

analysis (r2=0.95, Figure 10B). From these curves, the decay constant was significantly lower 

in the alginate group compared to both collagen groups (Figure 10C; p<0.05, Kruskal-Wallis 

test). The amount of BMP-2 recovered from the constructs at 26 days was not significantly 

different among groups, but a higher average amount of BMP-2 was recovered from alginate 

constructs (Figure 10D). 
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Figure 10. Release kinetics of BMP-2 from constructs in vitro. (A) Cumulative BMP-2 release 
through 26 days indicated delayed release through day 5 from alginate+mesh constructs. (B) 
Apparent percent BMP-2 retained in the constructs over time was plotted alongside the 
average exponential curve fits (denoted by _fit). (C) Decay constant λ was significantly 
higher for the collagen+mesh constructs (**p<0.01) and collagen constructs (*p<0.05) 
compared to alginate+mesh constructs. (D) Minimal BMP-2 was measured in the constructs 
at 26 days. 
 

Alkaline phosphatase induction assay 

 Functional assessment of the bioactivity of BMP-2 released and bound in the 

constructs was measured by an ALP assay with MC3T3-E1 cells. ALP activity was 

normalized to the amount of BMP-2 in the samples measured by ELISA (Figure 11). All 

samples induced measurable ALP activity, but no differences were observed among the 

groups from released BMP-2 at any time point. However, the BMP-2 remaining in the 

alginate+mesh constructs at 26 days elicited significantly higher ALP activity compared to 

BMP-2 retained in the collagen+mesh and collagen constructs (p<0.01). 
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Figure 11. ALP activity normalized to BMP-2. ALP activity was induced in MC3T3 cells 
incubated with samples containing BMP-2 from all time points analyzed (released at 3 hr 
through 5 d, and bound at 26 d). No differences in ALP activity from BMP-2 released at any 
time point were observed among groups. However, BMP-2 retained in the alginate delivery 
system promoted significantly higher ALP activity compared to that retained in both 
collagen delivery systems (**p<0.01).  
 

Radiography and micro-computed tomography 

 Longitudinal radiographs of defects treated with high dose BMP-2 in alginate and 

collagen sponge revealed an early heterotopic mineralization response at 2 weeks, which 

appeared more prevalent in the collagen sponge group. Qualitatively, the heterotopic bone 

was less prominent in both groups by 8 to 12 weeks, particularly for the alginate group 

(Figure 12). More than 90% of the defects in both groups showed mineralized bridging of 

the defect site by 8 weeks (9/9 of the collagen treated defects and 10/11 of the alginate 

treated defects). 
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Figure 12. Longitudinal radiographs of regenerating bone defects. Defects were treated with 
high dose BMP-2 in collagen sponge scaffold (top) or alginate hydrogel (bottom). 
Heterotopic ossification, although present by 2 weeks in both groups, was less pronounced 
over time, especially in the alginate group. 
 

 Quantitative comparison of mineral volume showed an increase in total bone 

volume over the course of the study for both groups, and total bone volume was 

significantly greater at 12 weeks in the alginate treated defects (p<0.05, Figure 13A). Further, 

bone volume within the defect space was significantly higher for the alginate group at 8 and 

12 weeks (p<0.01, Figure 13B). However, no differences in heterotopic mineralization were 

observed (Figure 13C). Nonetheless, as a proportion of total bone volume, heterotopic bone 

volume was significantly attenuated in the alginate group at 8 and 12 weeks (p<0.05, Figure 

13D). At all time points, over 50% of the total bone volume in the collagen treated defects 

was heterotopic bone, while approximately 30% of the total bone in the alginate group was 

outside the defect. 
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Figure 13. Regenerated bone volumes through 12 weeks. (A) Total bone volume (BV) 
increased over time and was significantly higher in the alginate group at 12 weeks (*p<0.05). 
(B) Bone volume within the defect region (defect BV) was significantly greater in the alginate 
group at 8 and 12 weeks (**p<0.01, ***p<0.001). (C) No differences in the amount of 
heterotopic bone were observed. (D) Nonetheless, as a proportion of total bone volume, 
heterotopic bone was significantly lower for the alginate group at 8 and 12 weeks (*p<0.05). 
 

 The units of mineral (termed trabeculae) both within and surrounding treated defects 

were further characterized. While there were no significant differences between the two 

groups in the number of trabecular structures (Figure 14A), the thickness of these structures 

was significantly higher in the alginate group at both 8 and 12 weeks of healing (p<0.01, 

Figure 14B). Correspondingly, the trabecular connectivity was reduced significantly in the 

alginate group at 12 weeks (p<0.05, Figure 14C), indicating a lower number of connections 

between the thicker trabeculae. The polar moment of inertia (pMOI) for the collagen group 

had a higher average value, but was not significantly different from the alginate group 

(Figure 14D). 
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Figure 14. Properties of total bone regenerated through 12 weeks. (A) The number of bone 
(trabecular) structures present was not signficantly different between groups. (B) Trabecular 
thickness was significantly increased at 8 and 12 weeks in the alginate group (**p<0.01, 
***p<0.001). (C) Correspondingly, connectivity density, a representation of the number of 
connections per unit volume, was augmented in the collagen treated defects at 12 weeks 
(*p<0.05). (D) Average polar moment of inertia (pMOI) evaluated from micro-CT 
reconstructions of 12 week samples was not significantly different between groups.   
 

Biomechanical testing 

 No statistically significant differences in the maximum torque at failure or the 

torsional stiffness between the two groups were noted (Figure 15A, B). Further, the 

maximum torque for both groups did not differ from that of intact bone [40]. The average 

torsional stiffness, a material property, was significantly higher than historical values reported 

for intact bone [40], but was not significantly different between the two scaffold groups. 
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Figure 15. Biomechanical properties of regenerated bone defect tissue. Dashed lines indicate 
mean values for historical intact control bone [40]. From torsional testing of bone defect 
tissue at 12 weeks, no differences in maximum torque to failure (A) or torsional stiffness (B) 
were observed. However, torsional stiffness values were significantly greater than those of 
intact bone (*p<0.05). 
 

Histology 

 Staining of cryosections at 2 weeks revealed heterotopic bone formation in the 

surrounding soft tissue. The spatial extent and appearance of heterotopic mineral was similar 

in both groups (Figure 16). Areas of mineralization and cartilage formation in the region 

around the mesh were evident from H&E staining (Figure 16A, D). Furthermore, von Kossa 

staining confirmed the presence of mineralized nodules (Figure 16B, E). In the defect region, 

many macrophages were observed with collagen sponge (Figure 16C), compared to fewer 

macrophages, and cells in general, in the alginate group (Figure 16F). 

  



www.manaraa.com

 66 

 

Figure 16. Heterotopic bone and macrophages at 2 weeks. (A, D) H&E staining indicated 
the presence of cartilage nodules outside the defect region in both groups. (B, E) von Kossa 
staining demonstrated that these nodules were mineralized (20x magnification, scale bar=50 
µm). (C, F) CD68 staining identified more macrophages (and cells in general) in the collagen 
group (10x magnification, scale bar=100 µm, except inset in C). 
 

 Representative paraffin sections captured the evolution of mineralization over time 

from 4 weeks to 12 weeks of healing. In the defect center, the collagen treated group 

contained trabecular, strut-like osteoid elements interspersed with abundant space that was 

filled with marrow and adipose like structures, giving the appearance of spongy bone (Figure 

17A) with few cartilage structures (Figure 17B) at 4 weeks. Most bone in the defect area 

appeared to be mature bone based on the dark red staining with Mallory’s modified aniline 

blue stain (Figure 17C) [190]. In contrast, the alginate group showed areas of bone 

interrupted by large pieces of alginate (Figure 17D, E) and negligible marrow and adipose 

like structures. The bone also appeared more immature (orange-red, Figure 17F) compared 

to bone in the collagen treated group.  
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Figure 17. Bone defect tissue at 4 weeks. (A-C) Defect tissue in the collagen group contained 
trabecular structures surrounded by marrow and adipose tissue. (B) Small pockets of 
cartilage (inset) were present in the collagen sponge group. (C) Further, the bone tissue 
present appeared to be mature osteoid. (D-F) In the alginate group, although similar 
amounts of bone tissue were observed, a large portion of the alginate remained (E). (F) The 
bone tissue appeared to be more immature bone (4x magnification, except B inset is 10x. 
Scale bar=100 µm). 
 

 By 12 weeks, the appearance of spongy bone with thin, mature trabeculae was 

unmistakable in the collagen treated group with no cartilage detected at this stage (Figure 

18A-C). A large portion of the section appeared to be loose adipose tissue with marrow 

structures. In sharp contrast, the alginate group showed more bone areas with some 

marrow-like infiltration between them (Figure 18D-F), as well as smaller persisting pieces of 

alginate (Figure 18E) adjacent to mature bone (Figure 18F).   
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Figure 18. Bone defect tissue at 12 weeks. (A-C) Defects treated with collagen sponge had 
primarily mature bone spicules present. (D-F) In contrast, alginate treated defects resulted in 
the formation of denser tissue comprising both residual alginate (E) and mature bone (F) (4x 
magnification, scale bar=100 µm). 
 

 In both groups, the heterotopic bone had a similar appearance and was closely 

associated with the surrounding soft tissue (Figure 19). Furthermore, the morphology of the 

heterotopic bone did not appear to change significantly between 4 and 12 weeks. 

Surprisingly, most heterotopic bone seen in the representative sections appeared to be more 

mature bone, regardless of the scaffold used or time of observation. 
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Figure 19. Heterotopic bone at 4 and 12 weeks. (A-F) Heterotopic bone was present 
adjacent to the surrounding soft tissue and appeared to be mature bone (C, F) (4x 
magnification, scale bar=100 µm). (G-H) Global heterotopic mineralization occurred to a 
similar extent in both groups (4x magnification, scale bar=2 mm). 
 

4.5 Discussion 

Delivery of BMP-2 in absorbable collagen sponge (ACS), though the clinical 

standard, is associated with high incidence of side effects, attributable to both the 
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supraphysiological doses of BMP-2 used, as well as the poor retention of BMP-2 by the 

collagen matrix. Complications with the use of BMP-2 occur in 10-50% of cases and include 

uncontrolled overgrowth of bone, osteolysis, and inflammation [192]. Nonetheless, a wide 

therapeutic dose of BMP-2 and a variety of carriers evaluated in the clinic and in pre-clinical 

animal models have yielded excellent bone regeneration. Despite the astounding success of 

this clinical therapeutic and many successful animal studies on dose and carriers, the lack of 

appropriate dose-effect or bioavailability-effect relationships have hampered the selection of 

effective dose. Here, we have directly compared the effect of delivery scaffolds, including the 

clinically used collagen sponge, for the delivery of high dose BMP-2. Contributions of this 

work include: (i) characterization of an orthotopic model that recapitulates adverse effects 

associated with high dose BMP-2 delivery and investigation of the factors contributing to 

these consequences, and (ii) evaluation of the hybrid alginate-PCL mesh delivery system for 

enhanced localized bone formation with high dose BMP-2 treatment. 

 Improving spatiotemporal delivery and/or presentation of growth factors is a topic 

of intense research, with strategies ranging from simple delaying of diffusion, to complex 

three-dimensional localization within bioprinted matrices [193]. Modifications of the BMP-2 

protein can also improve the residence time of the BMP-2 in ACS [194], but may be 

challenging for clinical translation. The rapid diffusion of BMP-2 away from the delivery site 

may quickly reduce the local growth factor concentrations, which may remain at 

physiologically insufficient levels for chemotactic recruitment or differentiation of 

regenerative cells in adequate numbers, necessitating supraphysiological doses [195]. Thus, 

improved delivery systems capable of maximizing growth factor potency while mitigating 

harmful side effects represent a significant clinical need. However, no clear relationship has 

been identified between side effects of BMP-2 and BMP-2 release kinetics from the 
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scaffolds, altered bone structure, or bone mechanical properties [109, 110, 182, 183]. In 

addition to being a function of delivery system, release profiles might differ vastly by animal 

species and anatomical location of delivery [172]. Despite evidence to the successful use of 

lower doses of BMP-2 with biomaterial scaffolds, it is believed that the rodent and small 

animal models heal more efficiently and at lower relative BMP-2 doses than large animals. 

This study used a BMP-2 dose of 120 µg/kg (30 µg per average 250 g rat), which falls in the 

typical range of supraphysiological doses used in clinical settings:  50-800 µg/kg (based on an 

80 kg individual) [181, 196]. 

 Improved healing with the alginate based delivery system in comparison to both 

collagen sponge and autograft, with lower doses of BMP-2, as well as improved retention of 

BMP-2 at the defect site in vivo are well established [39, 40, 165, 189, 190]. However, contrary 

to our hypothesis, the alginate delivery system did not reduce the amount of heterotopic 

mineralization compared to the collagen sponge in high dose BMP-2 delivery. The burst 

release of a large proportion (>25%) of the delivered BMP-2 within the first 5 days from 

both delivery systems may have resulted in the large heterotopic bone formation seen in 

both groups. The initial delay in burst release from the alginate group was insufficient in 

significantly reducing the heterotopic bone formation in the surrounding soft tissue. 

However, the higher average retention of the BMP-2 at 26 days and its significantly higher 

bioactivity in the alginate group likely facilitated the increases in bone deposition in the 

defect center and total bone volume at 12 weeks, as BMP-2 remaining in alginate constructs 

at 26 days has been shown to induce high levels of ALP activity [189]. Though not directly 

quantified, the presumed earlier collapse of the local chemotactic gradient for collagen 

sponge, as can be inferred by the high decay constant and the lower amount of BMP-2 

recovered in vitro at day 26, could further explain the differences in bone formation patterns 
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between the two delivery systems. The rapid efflux of BMP-2 from collagen without the 

mesh, particularly between days 1 and 5, suggested a retarding or binding effect of the BMP-

2 with the nanofiber mesh as observed previously [189]. Despite the lack of a significant 

biological effect of the mesh in our in vitro studies, the mesh was invaluable in establishing 

the limits for the defect margin in vivo and thus enabled consistent quantification of 

heterotopic bone formation in this longitudinal study. 

 Micro-CT data showed that the alginate delivery system facilitated significantly more 

bone deposition in the central defect region. This is likely due in part to delayed degradation 

and increased retention of BMP-2 in the alginate compared to the faster degrading collagen 

sponge [197]. Approximately 75% of the total bone in the alginate group was centrally 

located at 8 and 12 weeks, compared to less than 50% for the collagen group. These stark 

differences in amount and distribution of de novo bone suggest the alginate hybrid delivery 

system may be superior to the collagen sponge for high dose BMP-2 treatment of large bone 

defects. The structure-function relationship of this newly formed bone was further 

characterized to identify differences in mineralization and the impact on mechanical 

properties. Thicker trabeculae with lower connectivity observed in the alginate group from 

micro-CT quantifications agreed with its histological appearance, where the central defect 

region showed augmented mineralization. For collagen, this appearance recapitulated the 

more trabecular structure with larger marrow infiltration [109]. This histological appearance 

of a predominantly trabecular structure was in contrast with our previous characterization of 

bone formation with a lower dose of BMP-2 [165]. In that study, collagen sponge used 

without the peripheral mesh showed a lower density of connections at the early stage (4 

weeks) but was ultimately equivalent to the alginate+mesh group by 12 weeks. Taken with 

the increasing total bone volume over time within each scaffold, it is likely that continued 
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mineralization of the alginate, especially in the defect region, may have resulted in a 

reduction in the appearance of trabecular-like structures. Surprisingly, the total bone volume 

in this study was comparable to that seen with lower doses of BMP-2 in alginate hydrogel 

[189, 190]. 

 The lack of significant differences between the two scaffolds in their functional 

biomechanical properties, as evaluated by failure in torsion, was as expected based on the 

extent of heterotopic bone formation, both in its volume and spatial extent (pMOI) for both 

scaffold groups. Though better central bone formation was seen with alginate group, the 

comparable functional mechanics obtained even from the more heterotopically distributed 

bone in the collagen scaffolds provided insights into the continued use of these scaffolds in 

clinical care, especially since the torsional stiffness values were more than twice that of intact 

bone. Not surprisingly, these values were also higher than those reported for a six-fold lower 

dose of BMP-2 or autograft treatment [190]. 

 Histological analyses corroborate the differences in bone volume, as the defect space 

appeared to contain more bone in the alginate group at 12 weeks, and heterotopic bone was 

observed with both delivery systems. Though not quantified in this study, participation of 

muscle derived cells in the healing of open fractures [198] and the osteogenic differentiation 

of muscle derived stromal cells located adjacent to a fracture site are established [123]. 

Further, the muscle resident stem cell population (satellite cells) is activated after muscle 

injury and with chemotactic migration, incorporates into the healing callus in the case of 

bone injury [123, 198, 199]. The formation of the fracture callus in rat, rabbit, and sheep 

tibial fractures has been observed in the space between the fracture site and the intact muscle 

surrounding the injury [200]. Importantly, a short exposure of muscle stem cells to 

appropriate cytokines can be sufficient for osteoinduction [123, 148, 199]. As such, bone 
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healing in our segmental defect model was impaired when combined with a large volumetric 

muscle injury adjacent to the bone injury site [201]. Considered with our findings reported 

here, rapid osteoinduction of the neighboring muscle derived progenitor cells by the 

supraphysiological doses of BMP-2, and/or the large bone defect and necessary injury to the 

muscle, may have induced the heterotopic mineralization response, regardless of the scaffold 

used. We provide partial evidence of this phenomenon in the skeletal tissue surrounding the 

bone injury. The localization of mineral staining around the muscle fibers was suggestive of a 

rapid osteoinduction of muscle-derived progenitors, known to preferentially localize within 

myofibers [202]. 

 Contrary views exist on the source of the progenitor cells that form heterotopic 

mineral under the influence of BMP-2 in muscle tissue, but the pathogenesis is thought to 

progress from inflammation through the process of endochondral ossification [146]. 

Previous reports have been conflicting on the effect of BMP-2 on cellular infiltrate, 

suggested a reduced macrophage presence over time with BMP-2 [185], and conversely, an 

increase in inflammatory cells due to the presence of BMP-2 [109]. The heightened early 

cellular infiltration seen in the collagen sponge treated defects may be a result of the 

accelerated release of BMP-2 or the presence of the (bovine) collagen sponge itself. This 

study demonstrated highly mineralized cartilage nodules in the soft tissue surrounding the 

defects at 2 weeks, as also reported previously in relation to increasing doses of BMP-2 in a 

subcutaneous implant model [99]. Nonetheless, muscle mineralization was not extensively 

noted in either group and could have been more thoroughly characterized by examining 

even earlier time points.  

 In summary, BMP-2 retained in the alginate construct at 26 days in vitro 

demonstrated significantly higher bioactivity. In the segmental bone defect model, the 
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alginate delivery system facilitated significantly more bone deposition in the defect center. 

Despite enhanced centralized bone formation with the alginate system, the volume of 

heterotopic bone was not different between groups, possibly due to the early burst release of 

BMP-2 from both delivery systems. Likewise, mechanical properties from ex vivo torsional 

testing were comparable between groups. Histologically, mineral deposition was observed in 

the soft tissue beginning at 2 weeks in both groups. Nonetheless, the alginate delivery system 

had lower cellular infiltration early, and condensed mineral in the defect space later. Overall, 

this work recapitulated the heterotopic ossification often associated with high dose BMP-2 

delivery, and demonstrated that the total amount and pattern of BMP-mediated bone 

formation depend on delivery matrix. 
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V. SPATIOTEMPORAL GENE EXPRESSION PATTERNS AS A 

FUNCTION OF BMP-2 DOSE 

5.1  Abstract 

 Successfully healing critically sized bone defects is challenging and necessitates 

treatment with autograft bone tissue and/or osteogenic growth factors such as bone 

morphogenetic proteins (BMPs). Despite the potent osteoinductive properties of BMP-2, 

the use of BMP-2 at supraphysiological doses is associated with many adverse effects 

including heterotopic bone formation and tissue swelling. Using a proportionately high dose 

of BMP-2 in a well-established rat segmental bone defect model, we have also observed 

heterotopic mineralization in the soft tissue adjacent to bone defects. Based on these 

findings, the objective of this work was to examine the effects of BMP-2 dose on osteogenic 

and inflammatory gene expression profiles in the bone defect and surrounding soft tissue. 

Our hypothesis was that high dose BMP-2 would elicit greater osteogenic and inflammatory 

gene expression in both the bone defect and muscle tissue compared to low dose BMP-2. 

Critically sized rat femoral segmental defects were treated with 2.5 µg (low dose) or 30 µg 

(high dose) BMP-2 in RGD-alginate hydrogel injected into a poly(ε-caprolactone) (PCL) 

nanofiber mesh. Bone and muscle samples from operated limbs and contralateral, 

unoperated limbs were harvested at 3, 7, 14, and 21 days for analysis by quantitative real-time 

polymerase chain reaction (qPCR). Bone defects treated with high dose BMP-2 exhibited 

increasing expression of osteogenic genes through 21 days. However, these levels began to 

plateau for the low dose group by day 14. Inflammatory gene expression peaked at day 3 for 

the low dose group, while two pro-inflammatory genes (CCR7, IFNG) remained elevated 

through 21 days in high dose BMP-2 treated defects, suggesting earlier resolution of 
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inflammation with low dose BMP-2. In the direct comparison between BMP-2 doses, low 

dose BMP-2 elicited heightened inflammatory gene expression at day 3 in bone defect tissue. 

In contrast, high dose BMP-2 resulted in increased osteogenic gene expression in bone 

defects at day 3, and heightened expression of inflammatory and osteogenic genes in intact 

muscle, indicating local and systemic effects, respectively. In conclusion, these 

spatiotemporal differences in gene expression may, in part, explain the heterotopic 

mineralization and tissue swelling seen clinically with high doses of BMP-2. 

5.2  Introduction 

  Large bone defects resulting from trauma or tumor resection require augmentation 

of the tissue with allograft, autograft, or other bone substitute to heal these challenging 

injuries. The gold standard of care, the autograft, still involves complications such as pain at 

the donor site, lack of revascularization at the injury site, and non-union, necessitating 

repeated surgeries or in rare cases, amputation. Since bone tissue has an innate capacity to 

regenerate after injury, the development of tissue engineering strategies that support the 

endogenous bone repair process is crucial for healing of these most traumatic injuries. 

 Growth factor delivery has shown promise for augmenting the treatment of large 

bone defects, albeit with limitations at present. As alternatives to autograft treatment, the 

osteoinductive growth factors BMP-2 and BMP-7 have been used successfully for 

regeneration of bone in the clinic [26, 203]. However, controversy surrounds the clinical use 

of BMP-2, particularly for spinal fusion procedures, which is often associated with 

inflammatory reactions such as pain, swelling, and hematoma [29, 204]. Adverse effects such 

as these are compounded by the delivery of BMP-2 within a collagen sponge, which has 

limited ability to retain growth factor [25, 29, 39]. Nonetheless, minimal complications were 

observed when dose and containment were carefully considered [30]. 
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 After injury, the natural healing cascade involves a coordinated series of events: 

inflammation, proliferation/repair, and remodeling. Occurring immediately after injury, 

inflammation is characterized by increased blood vessel permeability, hematoma, and edema, 

along with the homing of a multitude of cells and secretion of growth factors. The highly 

regulated cascade of cytokines that constitute the acute inflammatory response also 

participate in instructing the bone healing process [116-118]. Bone injury results in the 

expression of a wide array of pro-inflammatory cytokines, which, along with many growth 

factors, particularly those from the transforming growth factor-beta (TGF-β) superfamily, 

result in inflammatory cell migration, angiogenesis, and mesenchymal stem cell (MSC) 

migration and differentiation [119-121]. For example, signaling molecules such as 

interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and stromal cell-derived factor-1 

(SDF-1) promote MSC migration in vivo [92, 122-124]. Osteoprogenitor cells secrete BMPs 

[25, 119], which together with inflammatory cytokines further enhance MSC migration, 

proliferation, and differentiation [125-127]. MSCs themselves have been found to play an 

immunomodulatory role during fracture healing [128]. Although levels of pro-inflammatory 

modulators are minimal during the subsequent proliferative/repair phase, their expression 

increases again during bone remodeling, when osteoblasts secrete IL-1, IL-6, IL-11, and 

other factors that promote osteoclastogenesis [127]. At this point, osteoblasts and 

chondrocytes become the main source of pro-inflammatory factors [120]. 

 Typically, inflammatory cytokine and gene expression levels return to baseline 

approximately one week post-injury [119-121]. Resolution of inflammation is crucial; 

however, the inflammatory response can be perturbed by factors such as trauma or disease 

[129, 130], and persistent inflammation has been associated with impaired bone healing 

[131]. Although the inflammatory cytokines IL-6 and TNF-α were found to be necessary for 



www.manaraa.com

 79 

bone healing in murine models [132, 133], prolonged exposure to these molecules was 

associated with diminished bone volume and function [134-136]. Osteoinductive factors 

such as BMP-2 also play key roles in many signaling pathways related to inflammation. BMP-

2 induces chemotaxis of inflammatory cells, namely lymphocytes, monocytes, and 

macrophages [137]. Additionally, BMP-2 supports osteoclast survival and differentiation 

through the enhancement of receptor activator of nuclear factor kappa-B ligand (RANKL) 

[138, 139]. Recently, Lee et al. determined that BMP-2 and BMP-7 induced an increase in IL-

6 production in human promonocytic leukemia THP-1 cells over cells incubated with 

lipopolysaccharide alone, suggesting BMPs may have a more direct role in stimulating 

inflammation [108]. 

 Heterotopic ossification involves a complex coordination of cellular and molecular 

mechanisms. During heterotopic ossification, it is thought that connective tissues are 

replaced by bone tissue through a process involving inflammation, muscle cell death, fibrous 

tissue proliferation, angiogenesis, and ossification (often endochondral) [146]. Expectedly, 

local tissue environmental factors (e.g., source of BMP stimulus, ability to recruit 

osteoprogenitor cells and induce their differentiation into bone tissue) play a major role in 

the extent to which heterotopic ossification occurs [141]. For example, osteogenic genes 

were upregulated in wounds with heterotopic mineralization compared to wounds without 

[147]. Despite progress in understanding the role of BMP signaling pathways in heterotopic 

mineralization, the cells that contribute to the pathology remain under investigation.  

 It is well understood that the biological effects of a growth factor are a function of 

the dose of growth factor delivered. Further, the consequences of supraphysiological doses 

of BMPs on bone healing and inflammation have not only been observed clinically but also 

examined in preclinical animal models. The inflammatory response following BMP-2 and 
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BMP-7 delivered subcutaneously or intramuscularly (IM) in collagen sponge revealed, with 

increasing BMP dose (1-20 µg), larger volumes of soft tissue edema and granuloma-like 

masses at both implantation sites and greater areas of inflammatory zones surrounding the 

IM implants [108]. However, regardless of BMP dose, soft tissue edema volumes peaked at 3 

hours in the subcutaneous implants and 2 days for the IM implants. Regarding orthotopic 

delivery of BMP-2, a dog model of critically sized radial defects treated with up to 2.4 mg of 

BMP-2 resulted in regenerated bone with cyst-like voids and impaired mechanical properties 

compared to bone formed with the lowest dose of BMP-2 (150 µg) [25]. Zara et al. 

determined a minimum threshold dose of BMP-2—11.25 µg in a critically sized rat bone 

defect model—at and above which poor bone quality and heterotopic mineralization were 

observed [109]. Likewise in a similar rat bone defect model, 10 µg BMP-2 resulted in 

improved bone healing compared to higher and lower doses [110]. The osteogenic effects of 

other growth factors (e.g., TGF-β, fibroblast growth factor-2) have also followed a biphasic 

dose response, whereby osteoinductive activity and bone healing peaked at mid-range 

concentrations [111-113]. Nonetheless, despite progress regarding the effects of BMP-2 

dose, our current understanding of these outcomes has primarily been based on gross, tissue 

level analyses. Notably, the majority of the literature describing the biomolecular factors that 

participate in the bone healing process have been determined using fracture models, not 

critically sized bone defects [114]. Recently, we delivered a high dose (30 µg) of BMP-2 in a 

well-established critically sized rat femoral segmental defect model (Aim 2A). This model 

recapitulated the heterotopic mineralization often observed with high dose BMP-2 and 

demonstrated that the total amount and pattern of BMP-mediated bone formation depend 

on delivery matrix. Thus, the objective of this study was to explore cellular and molecular 



www.manaraa.com

 81 

mechanisms of bone formation and inflammation in the context of critically sized bone 

defects as a function of BMP-2 dose. The hypothesis was high dose BMP-2 would elicit 

greater osteogenic and inflammatory gene expression in both the bone defect and muscle 

tissue compared to low dose BMP-2.  

5.3 Materials and Methods 

Surgical procedure and tissue harvesting 

 All procedures were approved by the Georgia Institute of Technology Institutional 

Animal Care and Use Committee (IACUC). Prior to surgery, slow-release buprenorphine 

(Wildlife Pharmaceuticals) was administered subcutaneously for analgesia. Unilateral critically 

sized (8 mm) femoral segmental defects were created in 13-week-old female SASCO 

Sprague-Dawley rats (Charles River Laboratories) as previously described [38, 41]. Defects 

were treated with 2.5 µg (low dose) or 30 µg (high dose) recombinant human BMP-2 

(rhBMP-2; Pfizer, Inc.) in irradiated RGD-alginate hydrogel (FMC Biopolymer) injected into 

a poly(ε-caprolactone) (PCL) nanofiber mesh.  

 Animals were euthanized by CO2 inhalation. Bone defect samples and muscle 

samples from operated limbs and contralateral, unoperated control limbs were harvested at 

3, 7, 14, and 21 days post-surgery for subsequent PCR analyses (n=3-5) and stored in 

RNAlater (Ambion) at 4°C. Bone defect tissue was harvested from within the nanofiber 

mesh, which fully enclosed the defect space, while intact femora served as control bone 

tissue. Additionally, historical micro-CT analyses had revealed that a significant portion of 

the heterotopic mineralization was located in the region of the adductor muscles adjacent to 

the defect, so a 5 mm biopsy of the adductor muscles from both limbs was collected for 

analysis. 
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RNA isolation and PCR analyses 

 RNA was extracted using a QIAzol (Qiagen) lysis reagent and QIAshredder (Qiagen) 

tissue homogenizer, and purified using an RNeasy Plus Mini Kit (Qiagen). RNA from bone 

defect samples was concentrated with an RNeasy MinElute Cleanup Kit (Qiagen). RNA 

quality and concentration were determined by spectrophotometry (NanoDrop ND-1000, 

Thermo Scientific). Samples were stored at -80°C until conversion to cDNA. Up to 120 ng 

(15 ng/µL) RNA was converted into cDNA using an RT2 First Strand Kit (SABiosciences). 

TaqMan® primers (Invitrogen, Table 3) for genes encoding osteogenic, myogenic, and 

inflammatory factors and chemokines (Table 4) were used to design custom gene arrays. 

Two housekeeping genes, Hprt1 and Rplp1, were included in the analyses due to their stable 

expression in previous qPCR studies of bone defect tissue [205]. Gene expression was 

quantified by real-time PCR on a Biomark HD (Fluidigm) microfluidic PCR system. To 

evaluate the quality of the primers and the reactions, AccuRef Rat Universal cDNA from 

minced rat tissues (Gene Scientific) and distilled water were used as positive and negative 

controls, respectively. Based on these controls, only one primer (Interleukin-4) demonstrated 

poor quality, and all data obtained with this primer were removed from subsequent analyses. 
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Table 3. Target genes for qPCR analyses. 
Gene symbol Gene name Product # 

RUNX2 Runt-related transcription factor 2  Rn01512298_m1 
OSX/SP7 Osterix  Rn02769744_s1 
BMP2 Bone morphogenetic protein 2 Rn00567818_m1 
COL1A1 Collagen, type I, alpha 1 Rn01463848_m1 
OCN/BGLAP Osteocalcin Rn00566386_g1 
OPN/SPP1 Osteopontin Rn01449972_m1 
ON/SPARC Osteonectin Rn01470624_m1 
RANKL/Tnfsf11 Receptor activator of nuclear factor kappa-B ligand  Rn00589289_m1 
CSF1 Colony stimulating factor 1 (macrophage) Rn00696122_m1 
OPG/Tnfrsf11b Osteoprotegerin  Rn00563499_m1 
IFNG Interferon gamma Rn00594078_m1 
TNF Tumor necrosis factor-alpha  Rn01525859_g1 
IL1A Interleukin 1 alpha Rn00566700_m1 
CCR7 Chemokine (C-C motif) receptor 7 Rn02758813_s1 
IL4 Interleukin 4 Rn99999010_m1 
IL6 Interleukin 6 Rn01410330_m1 
IL10 Interleukin 10 Rn00563409_m1 
PAX7 Paired box 7 Rn01518732_m1 
MYF5 Myogenic factor 5 Rn01502779_g1 
SDF1/CXCL12 Stromal cell-derived factor 1 Rn00573260_m1 
CCL3 Chemokine (C-C motif) ligand 3 Rn01464736_g1 
MCP1/CCL2 Monocyte chemoattractant protein 1 Rn00580555_m1 
Rplp1 Ribosomal protein, large, P1 Rn03467157_gH 
Hprt1 Hypoxanthine phosphoribosyltransferase 1 Rn01527840_m1 

 

Table 4. Classification of target genes for qPCR analyses. 
Role in bone healing Target genes 

Osteogenesis RUNX2    OSX/SP7    BMP2    COL1A1 
Mineralization OCN/BGLAP    OPN/SPP1    ON/SPARC 

Osteoclast differentiation RANKL    CSF1    OPG 
Inflammation TNF    IFNG    IL1A    IL6    IL10 

Chemokines/Receptors SDF1/CXCL12    MCP1/CCL2    CCL3    CCR7 
Muscle progenitors PAX7    MYF5 

Housekeeping Rplp1    Hprt1 
 

Statistical analyses 

 Target cycle threshold (Ct) values were used for subsequent analyses with the basic 

gene expression workflow in JMP Genomics (SAS Institute). The Ct value of a gene in a 
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single sample was normalized to the mean Ct value of that gene over all samples. Data were 

analyzed by three-way analysis of variance (ANOVA) with post-hoc pairwise comparisons. 

Significance level was determined using a false discovery rate (FDR) [206] with an α of 0.05. 

In other words, the probability of finding a false positive (type I error) among all the 

differentially expressed genes was 0.05. 

5.4 Results 

Gene expression relative to intact controls 

 Volcano plots allowed for visualization of genes differentially expressed between 

groups of interest (Figure 20). The dashed line was set based on an FDR of 0.05, so all genes 

above the line were considered significantly different between groups, here low dose BMP-2 

treated bone defects versus intact contralateral control bone at day 3. Because a lower Ct 

value means higher expression of a gene, negative values on the x-axis correspond to higher 

expression. 
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Figure 20. Representative volcano plot. Volcano plots display significance on the y-axis (-
log10(p-value)) versus differential expression on the x-axis (log2 scale). The dashed line 
corresponds to an FDR of 5%, so genes above the line were considered significantly 
different between groups. Because a lower Ct value means higher expression of a gene, 
negative values on the x-axis correspond to higher expression. +Significantly greater 
expression for operated legs compared to control legs at Day 3 with low dose BMP-2. 
xSignificantly lower expression for operated legs compared to control legs at Day 3 with low 
dose BMP-2. 
 

 As expected, many differences in gene expression were observed between operated 

legs and intact control legs, particularly for bone tissue (Figure 21A). For bone defects 

treated with low dose BMP-2, at day 3, more inflammatory genes had higher expression, and 

more osteogenic genes had lower expression, while few genes were differentially expressed 

for high dose BMP-2 at the same time point. By day 14, low dose BMP-2 had lower 

inflammatory gene expression compared to intact bone, and again, more genes were 

differentially expressed than for high dose BMP-2 at 14 days. 

 Fewer differences were observed between operated leg and control muscle tissues 

(Figure 21B). At day 14, muscle adjacent to defects treated with low dose BMP-2 displayed 

greater osteogenic and lower inflammatory gene expression. For muscle adjacent to high 

dose BMP-2, a decrease in genes regulating progenitor cell mobilization and 
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osteoclastogenesis (SDF1, MCP1, and CSF1) compared to intact muscle was observed 

across time.  

 Of the two housekeeping genes, Rplp1 was found to have stable expression across 

tissues. As expected, no differences between control bone/muscle of low dose animals and 

control bone/muscle of high dose animals were found (data not shown). For reference, the 

expression values of intact, contralateral bone and muscle tissues used as controls in this 

study were also compared to those of intact, age-matched naïve bone and muscle, 

respectively. Minimal differences were observed between naïve samples and Day 3 and Day 

7 tissues (data not shown).  

 

Figure 21. Gene expression relative to intact controls. Arrows indicate significant differences 
in operated legs compared to intact controls. (A) As expected, many differences were 
measured between bone defects and intact control bone tissue. In both tissue types, more 
genes were differentially expressed with low dose BMP-2. In particular, at day 3, bone 
defects treated with low dose BMP-2 showed many inflammatory genes with higher 
expression, and many osteogenic genes with lower expression. (B) Muscle tissue adjacent to 
bone defects treated with high dose BMP-2 had lower expression of chemokine and 
osteoclastogenic genes (SDF1, MCP1, and CSF1) across time.  
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Temporal changes in gene expression 

 Temporal patterns of gene expression in bone defect tissue treated with either low 

dose or high dose BMP-2 were analyzed across 3, 7, 14, and 21 days post-injury (Figure 22). 

In general, osteogenic gene expression increased over time for low dose and high dose 

treated defects. However, these levels began to plateau over time for the low dose group, 

while steady increases in osteogenic gene expression were observed for the high dose group 

through 21 days. In bone defects treated with low dose BMP-2, peak expression of both 

pro- and anti-inflammatory factors occurred at day 3, whereas for high dose BMP-2, two 

pro-inflammatory factors (CCR7, IFNG) remained highly expressed through day 21. 

Chemokine expression was similar for low and high dose BMP-2 treated defects, with 

expression of MCP1 and CCL3 highest at day 3, and SDF1 expression highest at day 21. 

Additionally, expression of myogenic markers decreased over time in both groups.  

 

Figure 22. Schematic of changes in gene expression over time. Bone defects treated with 
high dose BMP-2 exhibited increasing expression of osteogenic factors through 21 days. 
However, these levels began to plateau for the low dose group by day 14. Inflammatory gene 
expression peaked at day 3 for the low dose group, while two pro-inflammatory genes 
(CCR7, IFNG) remained elevated through 21 days in high dose BMP-2 treated defects. For 
both groups, expression of chemokines and myogenic genes was reduced over time, except 
SDF1 expression, which peaked at day 21.  

 



www.manaraa.com

 88 

Effects of BMP-2 dose on gene expression 

 Bone defects treated with low dose BMP-2 resulted in heightened expression of 

inflammatory genes IL1A and CCR7 at day 3 compared to the high dose BMP-2 group 

(Figure 23A). In contrast, defects augmented with high dose BMP-2 led to greater 

expression of osteogenic factors RUNX2 and OCN at day 3. Muscle tissue adjacent to bone 

defects treated with low dose BMP-2 had higher expression of MCP1 (chemokine) at day 14 

and OPN (multifunctional effector) at day 21 (Figure 23B). High dose BMP-2 resulted in 

greater expression of IFNG (inflammatory) at day 14. 

 No differences in intact bone were observed at any time point (Figure 23C). In intact 

muscle, while no genes had higher expression for the low dose group, high dose BMP-2 

elicited greater expression of inflammatory genes IL1A and IFNG at day 7 and greater 

expression of the early osteogenic gene COL1A1 at day 14 compared to the low dose group 

(Figure 23D).  
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Figure 23. Effects of BMP-2 dose on gene expression. Arrows indicate significant 
differences compared to alternate BMP-2 dose. (A) In bone defect tissue, increased 
expression of inflammatory (IL1A, CCR7) and osteogenic (RUNX2, OCN) factors was 
observed at day 3 with low and high dose BMP-2, respectively. (B) In muscle tissue of 
operated legs, both low dose and high dose groups resulted in increased expression of 
chemokine/inflammatory genes at days 14 and 21. (C) No differences were observed in 
intact bone tissue. (D) Intact muscle in the high dose BMP-2 group exhibited increased 
inflammatory gene expression at day 7 (IL1A, IFNG) and higher expression of an early 
osteogenic marker (COL1A1) at day 14.  
 

Principal component analysis (PCA) 

 Principal component analysis (PCA) allowed for a global perspective of differential 

gene expression based on each factor analyzed (i.e., leg, time, and BMP-2 dose). This 

provided a clear visualization of the distinct separation of defect bone samples and intact 

control bone samples (Figure 24). Further, bone samples clustered according to time point, 

with day 3 and 7 samples together and day 14 and 21 samples together. No clear separation 

based on BMP-2 dose was observed. 
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Figure 24. Principal component analysis of bone tissue. Samples of interest are enlarged. 
Overall, bone samples clustered according to time point (Solid circles: Day 3 and 7; Dashed 
circles: Day 14 and 21). Left: Intact control bone samples (enlarged) are clearly distinct from 
treated bone defect samples (small). Middle and right: The co-localization of low dose 
(enlarged in middle) and high dose (enlarged at right) samples indicated there was no clear 
separation of samples as a function of BMP-2 dose.   
 

 In contrast to the PCA of bone samples, PCA of muscle samples displayed no clear 

distinction between operated leg and control leg muscle samples (Figure 25). Similarly to 

bone tissues, however, muscle samples clustered according to time point, with day 3 and 7 

samples together and day 14 and 21 samples together. Again, no clear separation of samples 

based on BMP-2 dose was observed. 
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Figure 25. Principal component analysis of muscle tissue. Samples of interest are enlarged. 
Overall, muscle samples clustered according to time point (Solid circles: Days 3 and 7; 
Dashed circles: Days 14 and 21). Left: Intact control muscle samples (enlarged) are not 
clearly separated from operated leg muscle samples (small), especially at the 14 and 21 day 
time points (dashed circle). Middle and right: The co-localization of low dose (enlarged in 
middle) and high dose (enlarged at right) samples indicated there was no clear separation of 
samples as a function of BMP-2 dose. 
 

 
 
Figure 26. Proposed altered healing scheme. Low dose BMP-2 was thought to elicit healing 
via higher expression of inflammatory genes in bone defects early that was resolved over 
time. In contrast, high dose BMP-2 resulted in higher osteogenic gene expression early, 
which continued to increase over time. Systemic effects in intact muscle tissue were also 
observed with high dose BMP-2, including increased inflammatory and osteogenic gene 
expression.  
 

5.5 Discussion 

 In Aim 2A, alginate hydrogel and collagen sponge were used to deliver high dose 

BMP-2 in our rat segmental bone defect model. Although the alginate delivery system 

facilitated significantly more bone deposition in the defect center, it did not reduce the 

volume of heterotopic bone compared to that of the collagen sponge. In contrast, an 

abundance of historical studies using low dose BMP-2 in this model did not elicit 
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heterotopic bone formation [38-41, 165, 188-190]. We believe that understanding cellular 

and molecular level changes associated with the use of high dose BMP-2 is crucial for 

developing therapeutics to minimize adverse effects (e.g., heterotopic mineralization, 

inflammation). The objective of this work was to determine the gene expression profiles in 

the bone defect space and adjacent muscle tissue in high dose and low dose BMP-2-

mediated bone regeneration. 

 It is well understood that the initial inflammatory response is crucial for subsequent 

repair processes. In a rat fracture model, removal of the hematoma (especially days post-

injury) led to impaired fracture healing [115]. Although results on their use are conflicting, 

nonsteroidal anti-inflammatory drugs (NSAIDs), a class of drugs commonly prescribed for 

pain relief, have been associated with impaired fracture healing and delayed bony union [207-

209]. NSAIDs have demonstrated inhibitory effects on the proliferation and osteogenic 

differentiation of mesenchymal stem cells (MSCs) [210, 211], which have, themselves, been 

known to exhibit immunomodulatory properties during fracture healing [128]. Although the 

mechanism of action of NSAIDs on inflammatory cells remains unclear, these drugs are 

contraindicated for high-risk patient populations. 

 Based on the results of Aim 2A where heterotopic mineralization was observed as 

early as 14 days after high dose BMP-2 treatment of segmental bone defects, we explored 

gene expression in bone and muscle tissue at 3, 7, 14, and 21 days post-injury. We recognize 

that our analyses provide a snapshot of the cells only at the discrete time points chosen. 

Thus, additional differences in gene expression at alternate time points may have occurred 

but were undetected by our analyses. Additionally, although the target genes were chosen 

due to their known roles in inflammation, osteogenesis, and myogenesis, the custom arrays 
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were not an exhaustive list of the genes that invariably contribute to the complex healing 

process of these large bone defects.  

 The comparison of bone defect tissue to intact control bone revealed an increase in 

MCP1 expression and a decrease in SDF1 expression for both low and high dose BMP-2 

treated defects at all time points. The chemokine MCP-1 functions in the recruitment of 

monocytes and macrophages, among other immune cells, and promotes osteoclastic 

differentiation. Mice lacking the gene for the MCP-1 receptor had reduced macrophage 

migration, impaired osteoclast function, and delayed bone healing [212, 213]. Since both 

BMP-2 doses used here have previously been shown to lead to functional bone regeneration 

in this model [39, 189], it is not surprising that MCP1 was highly expressed in bone defect 

tissue compared to intact bone tissue. The chemokine SDF-1 is strongly chemotactic for 

lymphocytes [214] and is present in high levels in the bone marrow where B cells are 

produced [215]; thus, the higher SDF1 expression observed in intact bone was also an 

expected result. Many osteogenic genes were more highly expressed in bone defects 

compared to intact bone tissue, except for their minimal expression levels at day 3. In 

particular, OPN was more highly expressed for both low and high dose BMP-2 treated 

defects at all time points (expect low dose at day 7). Osteopontin (OPN) is a primary 

component of native bone ECM, and in a fracture model of OPN knockout mice, OPN-

deficient mice exhibited impaired angiogenesis and reduced late-stage bone remodeling 

[216]. 

 Temporal patterns of gene expression in bone defect tissue showed two interesting 

differences between low dose and high dose BMP-2 treated defects. First, osteogenic gene 

expression levels began to plateau by day 14 for low dose BMP-2, but high dose BMP-2 

resulted in steady increases in osteogenic gene expression through 21 days. In a similar result 
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following trauma in military personnel, osteogenic genes were upregulated in wounds that 

subsequently formed heterotopic mineralization [147]. Secondly, inflammatory gene 

expression in bone defects treated with low dose BMP-2 peaked at day 3, while for high 

dose BMP-2, the pro-inflammatory factors CCR7 and IFNG remained highly expressed 

through day 21. This suggests the bone defect microenvironment following treatment with 

low dose BMP-2 may allow for an earlier resolution of inflammation. Despite these 

differences, chemokine expression was similar for low and high dose BMP-2 treated defects, 

with expression of MCP1 and CCL3 highest at day 3, and SDF1 expression highest at day 

21. SDF-1 is important for recruiting not only lymphocytes but also hematopoietic stem and 

progenitor cells [217], as well as promoting the homing of circulating osteoprogenitor cells 

to the site of bone injury [218, 219]. Thus, SDF-1 may serve as a compensatory mechanism 

to mitigate the persistent pro-inflammatory stimulus in the case of high dose BMP-2. 

Nonetheless, these findings are interpreted with caution until protein expression can 

corroborate these changes in gene expression, and this work is underway. 

 Although few genes were differentially expressed in the direct comparison between 

the two groups, low dose BMP-2 elicited higher inflammatory gene expression in bone 

defects at day 3, while high dose BMP-2 resulted in greater osteogenic gene expression at day 

3. Notably, a heightened inflammatory response with low dose BMP-2 compared to high 

dose BMP-2 was contrary to our hypothesis. Nonetheless, this peak in inflammatory gene 

expression occurred at day 3, further supporting the theory of a more classical healing 

cascade with low dose BMP-2, compared to the response to high dose BMP-2, which 

involved persistent high expression of inflammatory genes over time (Figure 26). Just as 

early inflammation is necessary for healing, a significant contributor to delayed bone healing 

or eventual non-union is an unresolved (local or systemic) inflammatory response [114]. In a 
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sheep osteotomy model, inflammation was heightened and prolonged in sheep with 

mechanically-induced delayed bone healing [131]. Since heterotopic mineralization is 

believed to be stimulated by inflammation [146], the prolonged inflammation observed with 

high dose BMP-2 may have contributed to the initiation of this pathology.  

 Muscle in operated legs of both low dose and high dose BMP-2 groups exhibited 

increased expression of inflammatory/chemokine factors at later time points. These 

factors—MCP1 and OPN for low dose, and IFNG for high dose—are known to stimulate 

the mobilization of inflammatory cells. Interestingly, compared to intact muscle, muscle 

tissue adjacent to defects treated with low dose BMP-2 also displayed higher OPN 

expression at days 3, 14, and 21, while OPN had greater expression only at day 3 for high 

dose muscle. Besides modulating osteoclast recruitment and function during bone 

remodeling [220-222], OPN serves a variety of other crucial roles including inflammation, 

angiogenesis, and wound repair. OPN is important for inflammation and myogenesis during 

early muscle repair, and myoblasts in injured muscle have been shown to secrete osteopontin 

[223, 224]. Although the increase in OPN expression in injured muscle was not surprising, it 

is interesting to note that the differences in high dose muscle do not continue past day 3. 

  Although largely understudied, the systemic inflammatory response resulting from 

trauma such as critically sized bone defects cannot be ignored, as it too plays a role in the 

healing outcome. In two mouse muscle injury models, both dysregulation of BMP signaling 

and an inflammatory environment were necessary for heterotopic ossification to occur [150]. 

Inflammatory cells of hematopoietic origin have been shown to contribute to heterotopic 

ossification [151, 152]. Moreover, elevated levels of inflammatory cytokines both locally and 

systemically were associated with the development of heterotopic mineralization following 

combat injury [153], suggesting that local and circulating factors play a role in heterotopic 
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bone deposition. Furthermore, in a mouse model of polytrauma that involved either 

injection of bone fragments, induction of a muscle injury, or a combination of the two, the 

immediate (6 hours post-injury) systemic inflammatory response—IL-6 and IL-10 serum 

levels—were heightened as a result of the composite injury [225]. From combat operations, 

traumas such as blast injuries are known to elicit a higher and dysregulated inflammatory 

response [226, 227], and many of these patients subsequently develop heterotopic bone 

[228]. In this study, high dose BMP-2 led to delayed expression of inflammatory (IL1A, 

IFNG at day 7) and osteogenic (COL1A1 at day 14) markers in intact muscle compared to 

intact muscle in animals treated with low dose BMP-2. An increase in inflammatory and 

osteogenic genes in intact muscle suggests possible systemic effects resulting from the use of 

high dose BMP-2. 

 In general, the effects of BMP-2 dose in muscle tissue—whether operated or control 

muscle—were apparent at later time points than the differences observed in bone defect 

tissue. This is thought to be due to the time required for BMP-2 released from the alginate 

system to initiate chemotaxis and/or differentiation of muscle derived progenitor cells. Due 

to the proximity of muscle progenitors/myoblasts to bone and their ability to differentiate 

down the osteogenic lineage when exposed to BMP-2 [148], these cells may contribute 

directly to heterotopic bone formation. Muscle-derived progenitor cells from wounds that 

subsequently developed heterotopic bone were present in greater numbers and exhibited 

increased osteogenic differentiation compared to cells from wounds that did not form 

heterotopic bone [149]. No differences were observed in intact bone tissue as a function of 

BMP-2 dose, but a later time point than those chosen for this study may allow for detection 

of changes in the contralateral bone.  
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 One limitation of this study was that the baseline inflammatory response to the 

surgery alone was not explored, and we further acknowledge that the muscle incurred 

significant damage in the creation of the bone defects. Though a scaffold-only group (i.e., no 

BMP-2) would have been an informative control, we believed the more interesting 

comparison for high dose BMP-2 treatment was low dose BMP-2, which has led to 

consistent, functional bridging of the bone defect in this model [38-41, 165, 188-190]. 

Previously, defects treated with alginate+mesh only (no BMP-2) had diminished osteogenic 

gene expression (e.g., RUNX2, OSX, BMP2, and OPN) compared to those given BMP-2 

[205]. Furthermore, when only a mesh was implanted (no alginate or BMP-2), cellular 

infiltration into the defect was minimal at 3 days, with few macrophages and neutrophils 

present [229]. Although we anticipated cell number (and thus RNA yield) to be higher with 

chemotactic BMP-2 in this study, low amounts of RNA were obtained from bone defect 

samples at days 3 and 7. Despite low RNA yield, the Fluidigm system was successful in 

evaluating gene expression from these samples due to its pre-amplification process and 

sensitivity to small amounts of cDNA. Importantly, not only did the number of cells 

increase over the course of this study [229], but also the population/phenotype of cells likely 

changed over time. Therefore, the conclusions made herein were not based on changes in 

identical cell populations but were instead a comparison among very heterogeneous, 

dynamic cell populations in each tissue type as a function of BMP-2 dose. Furthermore, the 

large volume of (heterogeneous) tissue included in the analysis may have limited our ability 

to detect differences in gene expression. Particularly at the earlier time points at which the 

bone defect comprises primarily granulation tissue, the likelihood of measuring differential 

gene expression in osteoprogenitor cells (a minority of the cell population) was likely 

reduced. Nonetheless, increasing the sample size may have allowed for detection of 
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additional differences in gene expression (i.e., significant differences in more genes of a gene 

family), which would strengthen our conclusions. 

 Exploration of the gene expression profiles of tissue from bone defects and the 

adjacent soft tissue as a function of BMP-2 dose provided a crucial first step towards 

elucidating the pathological mechanisms associated with inflammation and heterotopic 

mineralization often observed with high dose BMP-2. By characterizing the complex bone 

defect environment during BMP-2 mediated bone regeneration, we may more effectively 

mitigate these adverse effects to promote successful bone regeneration. Modulating growth 

factor delivery and inflammation to better utilize endogenous repair mechanisms may allow 

for an improved healing response over currently used strategies. 
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VI. THE USE OF AMNION IN HIGH DOSE BMP-2 DELIVERY 

6.1 Abstract 

 Due to their rich structural and biological content—extracellular matrix (ECM) 

proteins, immunomodulatory molecules, and a cocktail of growth factors—as well as 

availability for use clinically, natural ECM materials such as amniotic membrane may hold 

vast potential in tissue engineering applications. The treatment of large bone defects with 

supraphysiological doses of bone morphogenetic protein-2 (BMP-2) has been associated 

with clinical complications including heterotopic mineralization and inflammation, often 

causing pain and impaired mobility. With our rat critically sized segmental bone defect 

model, we have also observed heterotopic mineralization surrounding bone defects treated 

with high dose BMP-2, as well as local and systemic inflammatory effects. The objective of 

this study was to investigate the ability of amniotic membrane to attenuate heterotopic 

mineralization in critically sized bone defects treated with high dose BMP-2. We 

hypothesized that amniotic membrane surrounding collagen sponge would result in less 

heterotopic mineralization compared to collagen sponge alone. Amniotic membrane 

functioned as a reservoir for BMP-2, retaining more than PCL mesh through 21 days in vitro. 

As hypothesized, the collagen+amnion delivery system facilitated significantly less 

heterotopic bone deposition, which also resulted in less total bone volume compared to 

collagen sponge alone. Although bone formation in the defect was delayed by the presence 

of amniotic membrane around the defect, by 12 weeks, defect bone volumes were 

equivalent. Torsional stiffness was significantly reduced with amnion but was equivalent to 

the stiffness of intact bone. Heterogeneous cell infiltrate was observed with amnion, while 

the collagen group had mainly mineralized tissue present. In summary, amniotic membrane 
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retained significant amounts of BMP-2 in vitro, and amniotic membrane surrounding collagen 

sponge loaded with high dose BMP-2 enhanced the localization of bone formation in 

segmental bone defects. 

6.2 Introduction 

Native ECM materials such as amniotic membrane and small intestinal submucosa 

(SIS) represent a class of naturally derived biomaterials already employed in the clinic for 

tissue healing applications. With their intrinsic structural properties (proteins, 

glycosaminoglycans (GAGs), adhesive ligands, etc.) and ability to bind growth factors, these 

natural scaffolds provide an environment beneficial for resident and recruited cells [50, 51]. 

Amniotic membrane was used as early as 1910 for skin grafting [52] and has been 

used successfully for the regeneration of many tissues, including cornea [53, 54], tendon [20], 

and cartilage [55]. The amniotic membrane is a bioactive ECM composed of an epithelial 

layer, a basement membrane, a thick fibrous layer (fibroblasts within loosely crosslinked 

collagen, glycoproteins, and proteoglycans), and avascular connective tissue [56, 57]. 

Amniotic membrane contains large amounts of collagens type I and III and hyaluronan [58-

60], as well as many growth factors, inflammatory mediators [51, 61], and angiogenic 

cytokines [62]. Although amniotic membrane materials are being increasingly used clinically, 

few studies have investigated the mechanisms behind the positive effects that result from 

their use. Furthermore, processing of the graft materials varies and is often not standardized. 

One patented procedure (PURION®) for amnion/chorion involves gentle cleansing, 

lamination of the amnion and chorion, dehydration, and devitalization (leaving cellular 

debris) [65]. Recently, amniotic membrane sheets processed by this method greatly improved 

the healing of diabetic foot ulcers compared to the clinical standard treatment [66], and 

micronized, injectable amniotic membrane slowed the progression of osteoarthritis in a rat 
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model [67]. By better understanding the mode of action and effects of ECM presentation on 

the cellular and healing response, we can effectively harness the endogenous repair 

mechanisms inherent in native tissues such as these. 

SIS is one of the most commonly used ECM materials, comprising a dense collagen 

network (mainly types I, III, and VI) [68], glycoproteins, GAGs, and a cocktail of bioactive 

growth factors [69] that contribute to the scaffold’s angiogenic [70], chemotactic [71], and 

immunosuppressive [72, 73] roles. Typically, SIS processing involves physical removal of the 

outer layers (leaving the submucosa and adjoining layers) followed by decellularization [74]. 

SIS was first used clinically in the 1960s as autograft or allograft tissue to replace 

dysfunctional vasculature [75]. Today, SIS grafts are primarily decellularized, porcine-derived 

materials, many of which are approved for clinical use and have had successful outcomes in 

the treatment of a variety of damaged tissues and diseases. For example, although limited 

mostly to case studies, CorMatrix© has been shown to function in the repair of cardiac 

tissues [76, 77]. In some cases, however, augmentation of diseased tissue with SIS had no 

benefit, or resulted in deleterious effects. For an in-depth review of SIS, see Andree et al. 

[50]. 

Similarly to amniotic membrane, SIS formulations have been tailored for different 

uses, including micronized SIS for cell delivery in a murine wound healing model, [78] and 

SIS gel for cardiac repair after myocardial infarction in the mouse [79]. Despite progress 

towards the characterization of SIS materials, the large degree of biological variability of 

native matrices such as these warrants improvements of standardized processing methods. 

Evaluating the biocompatibility, as well as biological and mechanical function of ECM 

materials post-processing is crucial for improving the biointegration and remodeling of these 

scaffolds. In particular, few studies have examined the host response to ECM-derived 
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biological materials. Allogenic and xenogenic ECM materials, even after decellularization, are 

capable of eliciting an immune response due to the presence of ECM proteins, which have 

been shown to stimulate the migration of neutrophils and macrophages [80-82]. Differences 

in the inflammatory profiles of noncrosslinked RestoreTM SIS (pro-healing M2 macrophages) 

and crosslinked CuffPatchTM SIS (pro-inflammatory M1 macrophages) have been observed 

in a rat abdominal wall defect model [83]. 

 Due to their rich biological content—a cocktail of growth factors and cytokines, 

including immunomodulatory molecules—as well as structural integrity afforded by the 

abundance of collagens and proteoglycans, ECM materials such as amniotic membrane may 

hold vast potential for tissue engineering. Effectively harnessing BMP-2, particularly via a 

clinically available material such as amniotic membrane that may function to retain BMP-2 

and localize bone formation, could improve the current treatment paradigm for large bone 

defects. Accordingly, our objective was to investigate the ability of amniotic membrane to 

attenuate heterotopic mineralization in critically sized bone defects. We hypothesized that 

amniotic membrane surrounding collagen sponge would result in less heterotopic 

mineralization compared to collagen sponge alone.  

6.3 Materials and Methods 

rhBMP-2 release kinetics 

To evaluate BMP-2 binding and release, 8-mm diameter disk-shaped samples (n=6) 

of dehydrated human amnion/chorion membrane (dHACM, MiMedx Group, Inc.) and 

poly(ε-caprolactone) (PCL) nanofiber mesh fabricated as described previously [40] were 

prepared using a biopsy punch. The specific amnion membrane product used was 

AmnioFix®; during processing, the epithelial layer was removed prior to dehydration. For 

BMP-2 binding, samples were incubated in 1 mL PBS containing 0.1% (w/v) bovine serum 
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albumin (BSA, Millipore Corporation) and 350 ng recombinant human BMP-2 (rhBMP-2, 

Pfizer, Inc.) for 18 h at 37°C. Construct-free wells served as controls, and the amount of 

BMP-2 remaining in construct-containing wells was subtracted from BMP-2 remaining in 

construct-free wells to determine the amount of BMP-2 initially bound [230]. For the release 

assay, samples were transferred to new wells, and the PBS solution was collected and 

replaced at 6 h, and at 1, 2, 4, 7, 14, and 21 days. Initial BMP-2 remaining in solution 

(unbound) and BMP-2 released over time were measured via an enzyme-linked 

immunosorbent assay (ELISA, R&D Systems). 

Surgical procedure 

 Unilateral 8-mm (critically sized) femoral segmental defects were created in 13-week-

old female SASCO Sprague-Dawley rats (Charles River Laboratories) as described previously 

[41]. A radiolucent polysulfone plate served as the internal fixation device, and the defects 

were created in the mid-diaphysis of the femur with an oscillating saw. The defects were 

treated with 30 µg recombinant human BMP-2 (rhBMP-2) (Pfizer, Inc.) in bovine type I 

collagen sponge (Kensey-Nash Corp.) alone or collagen sponge surrounded by amnion 

(dHACM, MiMedx Group, Inc.) (n=11). 150 µL of 0.1% (w/v) rat serum albumin (RSA, 

Sigma) in 4 mM HCl containing 30 µg of rhBMP-2 was added drop wise to the collagen 

sponge and allowed to adsorb for 10 minutes before implantation. For the amnion group, 

amnion was cut into 1.5 x 2.0 cm rectangle pieces and wrapped around the hydrated collagen 

sponge with the amnion layer facing outwards. During implantation, the collagen was press-

fit into the defect, and for constructs containing amnion, the ends of the amnion were 

placed around the native bone ends. For analgesia, slow-release buprenorphine (Wildlife 

Pharmaceuticals) was administered prior to surgery. Animals were euthanized by CO2 
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inhalation at 12 weeks post-surgery. All procedures were approved by the Georgia Institute 

of Technology Institutional Animal Care and Use Committee (IACUC). 

Radiography and micro-computed tomography 

 Bone regeneration was assessed via radiography and micro-CT through 12 weeks. 

For micro-computed tomography (micro-CT) analyses to quantify bone volume (BV), two 

volumes of interest (VOIs) were used: a 6-mm diameter to characterize mineralization inside 

and bordering the defect (defect BV), and a large diameter including all bone formation 

within the thigh (total BV). Heterotopic bone volume was defined as the difference between 

these two VOIs. 

Biomechanical testing 

 Ex vivo torsional testing to failure of femora (n=8) at 12 weeks provided a functional 

measure of the regenerated bone. For detailed methods, see [41]. After removal of the 

fixation plate and soft tissue, native bone ends were placed in Wood’s metal (Alfa Aesar). 

Torsional testing to failure was performed at 3° per second (ELF 3200; Bose ElectroForce 

Systems Group). Maximum torque to failure and torsional stiffness were calculated from the 

resultant torque-rotation curves. 

Histology 

 Histology was used to further characterize the distribution and maturation of newly 

formed bone within and surrounding the bone defect space (n=3). Samples were harvested 

at 12 weeks, fixed in 10% neutral buffered formalin for 48 h, and decalcified in a mild formic 

acid solution (Immunocal, Decal Chemical Corp.), which was changed three times a week 

for two weeks. After paraffin embedding, samples were sectioned by a tape transfer 

technique (Section Labs, Hiroshima, Japan) to obtain 5 µm mid-sagittal sections. Sections 

were stained with hematoxylin and eosin (H&E) to visualize the global cellular response, 
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residual collagen sponge and amnion materials, and spatial extent of mineralization. Mallory’s 

modified aniline blue stain was used to distinguish mature and immature osteoid as described 

previously [9, 22-25].  

Statistical Analyses 

 All data are reported as mean ± standard error of the mean (SEM). Data were 

analyzed using GraphPad Prism 5 (GraphPad Software, Inc.). BMP-2 release kinetics and 

bone volumes from micro-CT were analyzed by two-way repeated measures analysis of 

variance (ANOVA), with Bonferroni post hoc tests for pairwise comparisons. 

Biomechanical testing data was evaluated by t-tests. A p-value less than 0.05 was considered 

statistically significant. 

6.4 Results 

rhBMP-2 release kinetics 

After 18 hours incubation in BMP-2 solution, both amnion and PCL mesh disk-

shaped samples bound approximately 100 ng of BMP-2 (Figure 27A). As a percentage of 

bound BMP-2, significantly more BMP-2 was released over 21 days from PCL mesh 

compared to amnion (p<0.001, Figure 27B). 
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Figure 27. BMP-2 binding and release. (A) Both amnion and PCL mesh samples bound 
approximately 100 ng of BMP-2 after 18 h. (B) Significantly more of this bound BMP-2 was 
released over 21 days from PCL mesh compared to amnion (*p<0.001). 
 

Radiography and micro-computed tomography 

 Representative radiographs of defects treated with high dose BMP-2 in collagen 

sponge alone (top) or with amnion (bottom) at 2, 4, 8, and 12 weeks post-operatively 

allowed for qualitative comparison of new bone formation (Figure 28). The total amount of 

mineralization, and especially the heterotopic mineralization located outside the bone defect 

area, appeared to be attenuated in the amnion group. 

 

Figure 28. Radiographs of bone defects through 12 weeks. Representative radiographs of 
defects treated with high dose BMP-2 in collagen sponge alone (top) or collagen sponge with 
amnion (bottom) at 2, 4, 8, and 12 weeks post-operatively. Mineralization—in particular, 
heterotopic mineralization—appeared to be reduced in the amnion group. 
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 Micro-CT analyses provided spatially distinct measurements of bone volume. Total 

bone volume (BV) increased over time and was significantly higher in the collagen group at 

4, 8, and 12 weeks (p<0.05, Figure 29A). Bone volume within the defect region was also 

significantly higher in the collagen group at 4 and 8 weeks (p<0.05, Figure 29B). Although 

defect mineralization was delayed in the amnion group, defect BVs were equivalent between 

groups by 12 weeks. As hypothesized, heterotopic BV was significantly reduced at 8 and 12 

weeks in the presence of amnion (p<0.05, Figure 29C). Bone density maps of the total bone 

volume (Figure 29D, top) and a mid-sagittal cross-section through the volume (bottom) 

allowed for visualization of a dense heterotopic shell and an inner sparse trabecular structure 

in the collagen group. In contrast, the majority of mineralization in the collagen+amnion 

group was present in the defect region. 
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Figure 29. Spatial distribution of bone volume and bone mineral density maps. (A) Total 
bone volume (BV) increased over time and was significantly higher in the collagen group at 
4, 8, and 12 weeks (*p<0.05). (B) Defect BV was delayed in the collagen+amnion group but 
by 12 weeks was not significantly different from the collagen group. (C) Heterotopic BV was 
significantly reduced at 8 and 12 weeks in the presence of amnion (*p<0.05). (D) Bone 
density maps of total BV. Top: entire volume. Bottom: mid-sagittal cross-section through 
volume. Dashed lines indicate the borders of the defect region. Dense heterotopic bone and 
a sparse inner trabecular structure were visible in the collagen group. Minimal heterotopic 
bone was observed in the collagen+amnion group. 
 

Biomechanical testing 

 Biomechanical testing of the regenerated bone at 12 weeks was used as a measure of 

the functional recovery of the tissue. Maximum torque to failure was similar between groups 

(Figure 30A). However, torsional stiffness was significantly attenuated with amnion, likely 

due to the minimal heterotopic bone present (Figure 30B, p<0.05). Nonetheless, stiffness 

for amnion was similar to that of intact bone. 
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Figure 30. Functional assessment of the regenerated bone at 12 weeks. Dashed lines indicate 
mean values for historical intact control bone [40]. (A) Maximum torque to failure was 
similar between groups. (B) Torsional stiffness was significantly attenuated with amnion 
(*p<0.05), but stiffness for amnion was similar to that of intact bone. 
 

Histology 

 Mid-sagittal histological sections were used to observe regenerating bone tissue at 12 

weeks. With amnion, heterogeneous cell infiltrate was observed throughout the dense tissue 

in the defect space, and this hypercellularity appeared adjacent to the residual amnion tissue 

(Figure 31A, C). Orange staining of the amnion with Mallory’s staining suggested early 

mineralization of the tissue (Figure 31C). In addition to the remaining amnion, a significant 

portion of collagen sponge was present at 12 weeks. In contrast to the collagen+amnion 

group, the collagen only group had predominantly mineralized tissue in the defect (Figure 

31B, D). This bone tissue had a highly trabecular-like structure and was surrounded by small 

amounts of marrow tissue. 
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Figure 31. Bone defect tissue at 12 weeks. (A-B) H&E and (C-D) Mallory’s aniline blue 
staining (mineral: orange-red). (A, C)  In collagen+amnion treated defects, residual amnion 
(a) and collagen sponge (c) were visible. More cell infiltrate was present in the amnion group. 
(C) Orange staining of the amnion suggested early mineralization. (B, D) In the absence of 
amnion, the collagen sponge was resorbed. The lamellar structure and orange-red staining of 
the bony spicules was indicative of highly mineralized tissue. 4x scale bar = 100 µm. Insets: 
20x scale bar = 50 µm. 
  

6.5 Discussion 

 Traumatic bone injuries, and particularly critically sized defects, necessitate surgical 

intervention for repair, often involving augmentation with supraphysiological amounts of 

BMP-2. Adverse effects such as heterotopic mineralization and inflammation observed with 

high dose BMP-2 can be compounded by the delivery of high dose BMP-2 within collagen 

sponge, which has limited ability to retain growth factor. Therefore, if high doses of growth 

factors must be used, a crucial need exists for biomaterials capable of localizing and retaining 

these growth factors to the site of injury. Following upon Aim 2 where we modeled adverse 

effects of high dose BMP-2 (e.g., heterotopic mineralization, altered inflammatory response) 

in a rat segmental bone defect model, the objective of this study was to evaluate the efficacy 

of amniotic membrane to attenuate heterotopic bone formation with high dose BMP-2 

treatment. 
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 Amniotic membrane functioned as a reservoir for BMP-2, retaining more BMP-2 

than PCL mesh scaffolds through 21 days in vitro. As hypothesized, heterotopic 

mineralization was reduced with amnion surrounding collagen sponge compared to collagen 

sponge alone. The attenuated heterotopic mineralization may be attributed to amnion 

functioning as a biological sink to retain BMP-2, as amniotic membrane is known to harbor 

a wide array of growth factors and cytokines [51, 61, 62, 231, 232]. Furthermore, the 

patented PURION® process has been shown to maintain the biological activity of the 

amnion [51], so it is likely the amnion bound (possibly permanently) a portion of the BMP-2 

following release from the collagen scaffold. Additionally, the immunomodulatory factors 

present in the amnion [51, 61] may have tempered the inflammatory response such that the 

subsequent pathogenesis of heterotopic ossification was minimized. 

 The reduction in heterotopic bone deposition with collagen+amnion contributed to 

the lower total bone volume present in this group compared to collagen alone. Although 

bone formation in the defect was delayed by the presence of amnion around the defect, by 

12 weeks, defect bone volumes were equivalent. This phenomenon of delayed healing in 

defects surrounded by a scaffold lacking macropores was observed previously with this rat 

model, where bone healing was accelerated in the presence of macroporous PCL mesh 

surrounding the defect [40]. Similarly, in a critically sized sheep tibial defect model, 

membrane perforations were necessary for successful bone regeneration [233, 234]. In a 

composite bone and muscle injury model, early vasculature was impaired compared to bone 

injury alone, and a significant amount of vessel ingrowth into the defect region occurred 

through the holes in the PCL mesh [235]. Collectively, these findings underscore the 

importance of sufficient interaction of the bone defect space with the surrounding muscle 

tissue, which is thought to provide an excellent source osteoprogenitor cells, growth factors, 
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and vasculature. In a pilot study of amnion surrounding defects treated with low dose BMP-

2, no differences in vascular volume were observed at 12 weeks (data not shown). However, 

the 12 week time point is most likely too late to measure any differences that may have been 

present around weeks 2 to 4 when vascularization plays a crucial role in initiating the bone 

healing process [236]. 

 In the present study, amnion tissue was still present at 12 weeks and may have 

impaired cellular infiltration into the defect space, thus contributing to the delayed bone 

formation in the defect. Prior analyses determined that amnion tissue had an effective pore 

size on the order of nanometers and was capable of supporting cell attachment on the 

surface but limited the invasion of cells into the scaffold [237]. Primarily composed of dense 

connective tissue, the amnion/chorion membrane used here is ~100 µm thick [61] and 

contains an abundance of collagens and proteoglycans [58-60]. Physiologically, amnion plays 

a major structural role in situ by containing the developing fetus and amniotic fluid 

throughout pregnancy [238]. Thus, in addition to playing a biological role, the amnion may 

be a physical barrier to contain BMP-2 within the defect space, while adversely limiting cell 

invasion into the defect. Likely, both the structural and biological properties of the amniotic 

membrane contributed to the reduced heterotopic mineralization, though more investigation 

into the mechanisms of their efficacy is necessary. Future work with macroporous amniotic 

membrane may be able to tease out whether the biological or physical role of the membrane 

is more crucial in its ability to minimize heterotopic bone deposition.  

 Although ex vivo torsional testing resulted in reduced torsional stiffness in the 

collagen+amnion group, it was equivalent to the stiffness of intact bone. From micro-CT 

analyses of bone volumes, amniotic membrane delayed bone healing inside the defect space 

through 8 weeks. However, in parallel to the equivalent defect bone volumes at 12 weeks, 
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torsional testing at 12 weeks indicated the functional recovery to intact bone properties of 

bone defect tissue treated with collagen+amnion was not impaired. In contrast, the average 

torsional stiffness for the collagen group was approximately double that of intact bone. 

These results are similar to the findings in Aim 2A, where the alginate+mesh and 

collagen+mesh delivery systems resulted in torsional stiffness values double that of intact 

bone, and both also had a significant amount of heterotopic bone present. Based on the 

equation for torsional stiffness, 

kt = G x Javg 
    L 

 
where G is the elastic shear modulus, Javg is the average polar moment of inertia (pMOI), and 

L is the gauge length, an increase in average pMOI resulting from a widely distributed 

pattern of bone formation (i.e., heterotopic bone) would cause a proportionate increase in 

torsional stiffness. Here, heterotopic bone is believed to be the primary contributor to the 

increased torsional stiffness observed in the collagen only group. 

 One limitation of this study was the evaluation of human amnion tissue (xenograft) 

in immunocompetent rats. Histology at 12 weeks revealed a large amount of heterogeneous 

cell infiltrate in the collagen+amnion group, while the collagen group had mainly trabecular-

like mineralized tissue present. The delayed/incomplete degradation of the amnion may have 

elicited a heightened (inflammatory) cellular response, leading to the formation of a fibrous 

capsule. This hypercellularity, however, was not present adjacent the nanofiber mesh 

(surrounding alginate or collagen sponge) with high dose BMP-2 delivery at 12 weeks (Aim 

2A), or in historical studies in these delivery systems with low dose BMP-2 [39, 165]. Further 

exploration is needed to determine specific phenotypes of inflammatory cells that likely 

invaded in response to amnion implantation, and development of IHC protocols is ongoing. 

In particular, at this late time point of 12 weeks, examination of T cell phenotypes of the 
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adaptive immune response would be interesting to explore. Nonetheless, a similar 

hypercellular response to human micronized amnion was observed in the joint space in a rat 

osteoarthritis model [67]. In that study, the cells, believed to be mononuclear cells, were 

adjacent to amnion particles, and the response persisted throughout the study to 21 days. In 

our case, the delivery of amnion in the bone defect region would be expected to further 

exacerbate the inflammatory/immune response beyond that seen in an immunoprivileged 

location such as the joint space. Despite the cleansing and devitalization that occurs during 

processing of the tissue, a portion of the cellular debris persists, and the immunogenicity of 

this cellular debris remains unknown [239]. We observed moderate inflammatory infiltrate 

mostly in the area of residual amnion tissue, and this response may have contributed to the 

delay in bone healing. Nonetheless, the clinical use of these grafts, which are allogeneic in 

nature, may result in attenuated inflammatory/immune responses compared to the 

heightened response observed in the current rat model.  

 In summary, amniotic membrane retained significant amounts of BMP-2 in vitro, and 

amniotic membrane surrounding collagen sponge loaded with high dose BMP-2 enhanced 

the localization of bone formation in segmental bone defects. One major advantage of the 

materials used in this study is their availability for use clinically, which would drastically 

accelerate the translation of amnion for bone regeneration applications. Although 

heterotopic bone was minimized, future studies are needed to elucidate mechanisms behind 

the initial delayed healing response observed with amniotic membrane.  



www.manaraa.com

 115 

VII.  SUMMARY AND CONCLUSIONS4 5  

7.1 Overall Summary 

 Large bone defects resulting from trauma or tumor resection require augmentation 

of the tissue with allograft, autograft, or other bone substitute to heal these challenging 

injuries. As such, half a million bone grafting procedures take place every year in the United 

States alone, accounting for approximately $2.5 billion in medical expenses [17]. Thus, tissue 

engineering strategies based on osteoinductive cell and/or growth factor delivery provide 

much promise for improving therapies for bone regeneration. In particular, taking advantage 

of clinically approved biomaterials and growth factors by harnessing their healing efficacy for 

bone tissue engineering may accelerate the time line for translation of these therapeutics. 

 Growth factors approved by the FDA for osteoinduction are recombinant human 

bone morphogenetic protein-2 (rhBMP-2) and rhBMP-7 delivered via bovine collagen 

sponge, for use in spinal fusion, open tibial fractures, and non-unions [25, 26]. To date, 

however, these strategies remain inferior to autograft treatment, mainly due to the limited 

knowledge regarding efficacious dose, delivery method, and spatial and temporal distribution 

of the factor(s), as well as possible complications in the surrounding soft tissues (e.g., 

inflammation). These and other limiting factors necessitate the development of improved 

                                                

 

 

4 Portions of this chapter were adapted from Allen A B, Priddy L B, Li M T, Guldberg R E. Functional 
augmentation of naturally-derived materials for tissue regeneration. Ann Biomed Eng, 43(3), 555-567, 2015. 
License No. 3630480316395 
5 Portions of this chapter were adapted from Priddy L B, Chaudhuri O, Stevens H Y, Krishnan L, Uhrig B A, 
Willett N J, Guldberg R E. Oxidized alginate hydrogels for bone morphogenetic protein-2 delivery in long 
bone defects. Acta Biomaterialia, 10(10), 4390-4399, 2014. License No. 3603720780456 
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delivery systems [240], particularly for such potent growth factors, to maximize their healing 

potential while mitigating harmful side effects often associated with their use [29, 30]. 

 Growth factor delivery has shown promise for healing large bone defects, albeit with 

limitations at present. Thus the goal of this thesis was to investigate hybrid biomaterial 

systems with controlled strategies for BMP-2 delivery to promote structural and functional 

restoration of segmental bone defects. Design of an effective biomaterial carrier must 

include careful consideration of a number of factors, including biomaterial degradability or 

ability to allow tissue ingrowth, and localization of growth factors to the site of injury to 

promote efficient healing and minimize negative effects. In particular, developing strategies 

to mitigate adverse effects associated with the use of high dose BMP-2 (e.g., heterotopic 

ossification, chronic inflammation) may improve the healing of large bone defects. Finally, 

understanding the role that specific cells and cytokines play in the processes of inflammation 

and bone healing, particularly in the context of large bone defects, is crucial for improving 

regenerative strategies.  

 Bone tissue regeneration may be impeded by the presence of residual biomaterials at 

the injury site. Therefore, understanding the timelines of protein release and the impact of 

timing of biomaterial degradation on bone healing is crucial for complete restoration of the 

form and function of bone tissue. In Chapter 3, we utilized an alginate modified by both 

irradiation and oxidation, thus a lower molecular weight and more degradable hydrogel. As a 

biomaterial, alginate is practical and easy to use due to its amenability to gentle crosslinking 

and injection. Previous studies in our lab have shown slower BMP-2 release and improved 

bone regeneration with irradiated alginate hydrogel+mesh compared to the clinically used 

collagen sponge [39, 165]. Therefore, in introducing an additional structural modification 

into the alginate, the goal was to maintain the appropriate BMP-2 release profile and ease of 
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use of the irradiated alginate, while accelerating alginate degradation to augment bone tissue 

interconnectivity and formation/maturation. 

 The release of BMP-2 from oxidized-irradiated alginate was accelerated compared to 

that from irradiated alginate. Although this accelerated BMP-2 release from oxidized-

irradiated alginate did not lead to an increase in osteoblastic differentiation, both constructs 

contained bioactive BMP-2 after 26 days in vitro. In vivo bone mineral density was significantly 

greater at 8 weeks in the oxidized-irradiated group. Histological analyses at 12 weeks revealed 

enhanced degradation of oxidized-irradiated alginate and the appearance of more organized, 

lamellar bone. The difference in size distribution of residual alginate suggested that oxidation 

of irradiated alginate increased the degree of hydrolytic degradation. The more diffuse and 

fragmented oxidized-irradiated alginate may have allowed for an increase in cellular 

infiltration into the defect space, thereby promoting more rapid formation of organized, 

lamellar bone. Moreover, the breakdown of the oxidized-irradiated alginate may have been 

accelerated as the material degraded due to greater cellular invasion into the defect space. 

However, enhanced fragmentation of oxidized-irradiated alginate did not translate into 

augmented bone repair, as no differences in bone volume or mechanical properties were 

observed. Nonetheless, scaffold degradation remains a critical design parameter for 

evaluating the efficacy of growth factor delivery vehicles in tissue engineering. 

 Traumatic bone injuries, and particularly critically sized defects, necessitate surgical 

intervention for repair, often involving augmentation with BMP-2. However, the selection of 

BMP-2 dose is frequently empirical in nature, leading to the use of doses higher than 

necessary [30]. Supraphysiological doses of BMP-2 are known to elicit adverse effects such 

as heterotopic mineralization, inflammation, and impaired bone quality [29, 30, 108, 109]. 

Because the hybrid irradiated alginate+mesh delivery system had demonstrated efficacy in 
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slowing the release of low dose BMP-2 compared to collagen sponge [39], we hypothesized 

that the alginate+mesh would reduce heterotopic mineralization when loaded with a high 

dose of BMP-2 (Chapter 4, Aim 2A). Since oxidized-irradiated alginate showed limited 

improvements over irradiated alginate (Chapter 3, [189]), the irradiated alginate was chosen 

for Aim 2 studies. 

 The burst release of BMP-2 from the alginate+mesh was dampened compared to 

collagen sponge+/-mesh in vitro. In the rat segmental defect model, the alginate delivery 

system facilitated significantly more bone deposition in the central defect region (8 and 12 

weeks) as well as greater total bone volume (12 weeks). Surprisingly, the total bone volume 

in this study was comparable to that seen with lower doses of BMP-2 in alginate hydrogel 

[189, 190]. The higher defect bone volume was likely due in part to delayed degradation and 

increased retention of BMP-2 in the alginate compared to the faster degrading collagen 

sponge [197]. However, contrary to our hypothesis, the alginate+mesh did not reduce the 

volume of heterotopic bone. The burst release of a large portion (>25%) of the delivered 

BMP-2 within the first 5 days from both delivery systems may have resulted in the large 

heterotopic bone formation seen in both groups. Moreover, the initial delay in burst release 

from the alginate group was insufficient in significantly reducing the heterotopic bone 

formation in the surrounding soft tissue. The heightened early cellular infiltration seen in the 

collagen sponge treated defects may be a result of the accelerated release of BMP-2 or the 

presence of the (bovine) collagen sponge itself. 

 The lack of significant differences between the two scaffolds in their functional 

biomechanical properties, as evaluated by failure in torsion, was as expected based on the 

extent of heterotopic bone formation, both in its volume and spatial extent (pMOI) for both 

scaffold groups. Though better central bone formation was seen with alginate group, the 
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comparable functional mechanics obtained even from the more heterotopically distributed 

bone in the collagen scaffolds provided insights into the continued use of these scaffolds in 

clinical care, especially since the torsional stiffness values were more than twice that of intact 

bone. Nonetheless, these stark differences in amount and distribution of de novo bone suggest 

the alginate hybrid delivery system may be superior to clinically used collagen sponge for 

high dose BMP-2 treatment of large bone defects. Contributions of this work include: (i) 

characterization of an orthotopic model that recapitulates adverse effects associated with 

high dose BMP-2 delivery and investigation of the factors contributing to these 

consequences, and (ii) evaluation of the hybrid alginate-PCL mesh delivery system for 

enhanced localized bone formation with high dose BMP-2 treatment. 

 It is thought that the pathway to healing versus chronic inflammation is determined 

soon after injury. Thus, advancing our understanding of the cellular and molecular factors 

that participate in the bone repair process in a critically sized bone defect model may allow 

for the development of improved tissue engineering strategies. Subsequently in Aim 2, we 

investigated variations in gene expression as a function of BMP-2 dose in the defect site and 

adjacent muscle during the inflammatory and early repair phases of our bone defect model 

(Chapter 5, Aim 2B). The irradiated alginate+mesh vehicle was used to deliver either a low 

(healing) dose of BMP-2 akin to that used in Aim 1, or the high dose used in Aim 2A. The 

hypothesis was that high dose BMP-2 would elicit greater osteogenic and inflammatory gene 

expression compared to low dose BMP-2. 

 Bone defects treated with high dose BMP-2 exhibited increasing expression of 

osteogenic genes through 21 days. However, these levels began to plateau for the low dose 

group by day 14. Similar findings following trauma in military personnel have been observed, 

whereby osteogenic genes were upregulated in wounds that subsequently formed heterotopic 
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mineralization [147]. Additionally, inflammatory gene expression peaked at day 3 for the low 

dose group, while two pro-inflammatory genes (CCR7, IFNG) remained elevated through 21 

days in high dose BMP-2 treated defects. This suggested the bone defect microenvironment 

following treatment with low dose BMP-2 may allow for an earlier resolution of 

inflammation compared to the response following high dose BMP-2 treatment.  

 In the direct comparison between BMP-2 doses, contrary to our hypothesis, low 

dose BMP-2 elicited heightened inflammatory gene expression at day 3 in bone defect tissue. 

In contrast, high dose BMP-2 resulted in increased osteogenic gene expression in bone 

defects at day 3, and heightened expression of inflammatory and osteogenic genes in intact, 

unoperated limb muscle, indicating both local and systemic effects, respectively. The greater 

inflammatory gene expression at day 3 with low dose BMP-2 further supported the theory of 

a more classical healing cascade, since early inflammation is necessary for healing. Likewise, a 

significant contributor to impaired bone healing is an unresolved (local or systemic) 

inflammatory response. Since heterotopic mineralization is believed to be stimulated by 

inflammation [146], the prolonged and systemic inflammation observed with high dose 

BMP-2 may have contributed to the initiation of this pathology. Overall, the studies in Aim 

2 provided insight into the effects of supraphysiological BMP-2 on the spatiotemporal 

patterns of bone formation, as well as the cells and signaling factors that play a role in this 

process. By characterizing the complex bone defect environment during BMP-2 mediated 

bone regeneration, we may more effectively mitigate these adverse effects to promote 

successful bone regeneration.  

 Due to their rich structural and biological content—ECM proteins, 

immunomodulatory molecules, and a cocktail of growth factors—as well as availability for 

use clinically, natural ECM materials such as amniotic membrane may hold vast potential in 
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tissue engineering applications. Despite the efficacy of BMP-2 for bone regeneration, the 

adverse effects of BMP-2 at supraphysiological doses (e.g., heterotopic bone formation, 

tissue swelling) warrant the investigation of strategies to attenuate these negative reactions. 

Since heterotopic mineralization was observed with a proportionately high dose of BMP-2 in 

our rat segmental bone defect model (Chapter 4), one subsequent objective was to evaluate 

the ability of amniotic membrane surrounding the bone defect space to attenuate heterotopic 

mineralization in critically sized bone defects treated with high dose BMP-2 (Chapter 6). 

Collagen sponge was chosen as the delivery vehicle for BMP-2 because it is an FDA-

approved device. If successful in reducing heterotopic mineralization, the amniotic 

membrane (also clinically available) wrapped around collagen sponge could have an 

immediate impact in the clinic. 

  Amnion membrane retained more BMP-2 than PCL mesh did through 21 days in 

vitro. As hypothesized, the collagen+amnion delivery system reduced heterotopic bone 

deposition, which also resulted in less total bone volume compared to collagen sponge alone. 

Although bone formation in the defect was delayed by the presence of amnion membrane 

around the defect, by 12 weeks, defect bone volumes were equivalent. This phenomenon of 

delayed healing in defects surrounded by a scaffold lacking macropores was observed 

previously with this rat model, where bone healing was accelerated in the presence of 

macroporous PCL mesh surrounding the defect [40]. Similarly, in a critically sized sheep 

tibial defect model, membrane perforations were necessary for successful bone regeneration 

[233, 234]. These findings underscore the importance of sufficient interaction of the bone 

defect space with the surrounding muscle tissue, which is thought to provide an excellent 

source osteoprogenitor cells, growth factors, and vasculature. Likely, both the structural and 



www.manaraa.com

 122 

biological properties of the amniotic membrane contributed to the reduced heterotopic 

mineralization, though more investigation into these mechanisms is necessary. 

 Torsional stiffness was significantly reduced with amnion but was equivalent to the 

stiffness of intact bone. These results are similar to the findings in Aim 2A, where the 

alginate+mesh and collagen+mesh delivery systems (both containing a significant amount of 

heterotopic bone) resulted in torsional stiffness values double that of intact bone. Here, 

heterotopic bone was believed to be the primary contributor to the increased torsional 

stiffness observed in the collagen only group. 

 Heterogeneous cell infiltrate was observed with amnion, while the collagen group 

had mainly mineralized tissue present. The delayed/incomplete degradation of the amnion 

may have elicited a heightened (inflammatory) cellular response, leading to the formation of 

a fibrous capsule. A similar hypercellular response to human micronized amnion was 

observed in the joint space in a rat osteoarthritis model [67]. In that study, the cells, believed 

to be mononuclear cells, were adjacent to amnion particles, and the response persisted 

throughout the study to 21 days. In our case, the delivery of amnion in the bone defect 

region would be expected to further exacerbate the inflammatory/immune response beyond 

that seen in an immunoprivileged location such as the joint space. Despite the cleansing and 

devitalization that occurs during processing of the tissue, a portion of the cellular debris 

persists, and the immunogenicity of this cellular debris remains unknown [239]. Of note, this 

hypercellularity was not observed adjacent the nanofiber mesh (surrounding alginate or 

collagen sponge) with high dose BMP-2 delivery at 12 weeks (Aim 2A), or in historical 

studies in these delivery systems with low dose BMP-2 [39, 165]. Further exploration is 

needed to determine specific phenotypes of inflammatory cells that likely invaded in 

response to amnion implantation. 
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 The significance of this work includes the evaluation of translational therapeutics 

that facilitated improved structural and functional repair of bone in a small animal model. 

Specifically, the efficacy of oxidized-irradiated alginate as a more degradable protein delivery 

system for BMP-2 was evaluated. Additionally, this work included characterization of a 

rodent model and development of associated techniques to elucidate the effects of a 

supraphysiological dose of BMP-2, akin to those used clinically, on bone healing and 

inflammation. Importantly, the effectiveness of the hybrid alginate+mesh delivery vehicle 

was compared to the clinically used collagen sponge. While gaining a better understanding of 

gene expression during bone healing with high and low dose BMP-2, this work evaluated the 

ability of ECM-derived amniotic membrane to reduce heterotopic mineralization in a 

critically sized bone defect model. Modulating growth factor delivery and inflammation to 

better utilize endogenous repair mechanisms may allow for an improved healing response 

over currently used strategies.  

7.2 Biomaterial Degradability: Is It a Prerequisite for Functional Bone Healing?  

  Natural materials that function as the building blocks for tissues in the body serve as 

the basis for a variety of successful tissue engineering strategies. To date, however, 

biomaterials in the field of tissue engineering have been only moderately effective, due in 

part to the often-minimal degree to which they match the form and function of naturally 

occurring matrices [241]. Thus, the ability to tailor, e.g., mechanical properties, porosity, and 

degradation rate of a scaffold to ultimately match the structural properties of the native 

tissue can facilitate more complete integration of the biomaterial with the surrounding tissue. 

 Degradation is a key parameter regulated by both porosity and mechanical 

properties. Scaffold degradation concomitant with tissue formation is desirable for many 

tissue engineering applications. The effects of biomaterial degradation on BMP-2 release and 
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bioactivity, as well as bone regeneration in vivo were evaluated in Aim 1. The biomaterials 

studied were alginate hydrogels, which are capable of undergoing accelerated degradation via 

structural modifications. Alginate hydrogels derived from brown algae have been widely 

studied for many healthcare applications, including pharmaceutics, dental impressions, and 

wound dressings. As a biomaterial, alginate possesses advantages such as ease of gelling, 

biocompatibility, and low immunogenicity, but its inability to enzymatically degrade [20] 

hinders its use for regenerative medicine applications. For degradation, alginate is dependent 

on the often slow dissociation of ionic crosslinks [21]; however, modification of the polymer 

structure by techniques such as irradiation and oxidation can increase the degradation rate. 

 In our hands, the effects of alginate oxidation were minimal. Most notably, oxidized-

irradiated alginate led to accelerated BMP-2 release in vitro, higher bone mineral density 

(albeit transiently) at 8 weeks, and fewer large fragments of residual alginate at 12 weeks. 

Additionally, oxidized-irradiated alginate resulted in the recovery of biomechanical properties 

to those of intact bone, while irradiated alginate led to lower max torque compared to intact 

bone. Nonetheless, because oxidation did not lead to significant improvements in bone 

regeneration, irradiated alginate was used for the studies in Aim 2. Of further concern was 

the faster release of BMP-2 from oxidized-irradiated alginate, which would be a 

disadvantage, especially with delivery of high doses of BMP-2. 

 Notably, much of the oxidized-irradiated alginate remained in the defect at 12 weeks, 

comprising ~30% of the total stained area (determined by histomorphometry), compared to 

~40% of total area composed of irradiated alginate. Despite incomplete degradation of both 

alginates in the timeframe and species of this model, both facilitated robust, functional bone 

regeneration. Thus it is believed that integration of the biomaterial with host tissue (e.g., 
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interactions that support the recruitment, attachment, and differentiation of progenitor cells) 

is more crucial to successful healing than complete degradation of the biomaterial itself. 

 Importantly, the evaluation of these biomaterials in a rat model may have limited our 

ability to measure differences between the groups, due to the limited capacity for bone 

remodeling in the rat species. In collaboration with Dr. Dietmar Hutmacher, the irradiated 

alginate delivery system (hydrogel + nanofiber mesh) was used for BMP-2 delivery in a 

sheep tibial defect model, resulting in a greater degree of bone remodeling than had been 

observed in the rat model.  

7.3 Alginate-PCL Mesh Constructs for Improving BMP-2 Bioactivity and Localized 

Bone Regeneration   

 Improved bone healing and higher local retention of low dose BMP-2 at the defect 

site has been observed with the alginate-PCL mesh delivery system compared to both 

collagen sponge (with BMP-2) and autograft [39, 40, 165, 189, 190]. With low dose BMP-2 

in alginate (Aim 1), a burst release through 5 days followed by minimal release of BMP-2 was 

observed from both alginates (as seen previously with irradiated alginate [40]). Nonetheless, 

approximately one-third of the loaded BMP-2 remained bound to the alginate-PCL 

nanofiber mesh constructs and was bioactive through 26 days [189]. While Jeon et al. 

measured an increase in bone volume from a slow, sustained release of BMP-2 [166], others 

reported improved bone healing when an initial burst release was followed by a smaller 

sustained release [39, 167, 168]. 

Similarly, in the delivery of high dose BMP-2 (Aim 2A), most of the BMP-2 was 

released by 5 days. However, compared to collagen sponge (with or without a mesh), the 

initial (within the first 48 hours) burst release from alginate was mitigated. Importantly, 

BMP-2 retained in the alginate constructs at 26 days in vitro demonstrated significantly higher 
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bioactivity. Although the alginate system did not reduce the amount of heterotopic bone in 

vivo, it resulted in significantly more total bone volume and bone volume in the defect space. 

The enhanced bioactivity of BMP-2 remaining in the alginate constructs at 26 days likely 

facilitated the increases in total bone volume and bone deposition in the defect center. 

Though not directly quantified, the presumed earlier collapse of the local chemotactic 

gradient for collagen sponge, as can be inferred by the high decay constant and the lower 

amount of BMP-2 recovered in vitro at day 26, could further explain the differences in bone 

formation patterns between the two delivery systems. 

Regardless of BMP-2 dose, the bioactivity of the bound BMP-2 in the alginate 

constructs may have been prolonged due to the interaction of the protein with the 

biomaterial, which could have delayed/minimized protein denaturation. Maintenance, and 

even possible enhancement, of bioactivity of VEGF, another heparin-binding growth factor, 

has been observed in the presence of alginate [45, 169]. Furthermore, BMP-2 bioactivity has 

been sustained on the order of weeks using various delivery vehicles, including PCL [170]. 

However, to our knowledge, our Aim 1 studies were the first demonstration of prolonged 

bioactivity of BMP-2 retained within alginate hydrogels, specifically an alginate-PCL mesh 

carrier [189]. Likely, both the alginate hydrogel and the nanofiber mesh contributed to the 

binding of BMP-2, as BMP-2 retention was enhanced in the hybrid delivery system 

compared to both the mesh only and alginate only constructs. However, the precise roles of 

each are yet to be delineated. In Aim 2A with collagen sponge (+/- mesh), no effect of the 

nanofiber mesh on BMP-2 release, retention, or bioactivity was observed. 

It is possible that both the initial burst release and the localized retention of BMP-2 

in the alginate constructs in both Aim 1 (low dose) and Aim 2A (high dose) facilitated bone 

regeneration, the former by recruiting the initial wave of osteoprogenitor cells to the defect 
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site, and the latter by influencing the differentiation of osteoprogenitor cells once present 

within the defect space [168, 171]. Collectively, these findings suggest the bioavailability of 

BMP-2 for an extended time frame (~weeks) may be required for robust localized bone 

formation in critically sized bone defects. 

7.4 Mechanistic Insight into Bone Healing with High Dose BMP-2 

 From Aim 1 and many additional studies with this bone defect model [38-41, 165, 

188-190], it is well understood that a low dose of BMP-2 in our alginate delivery system is 

sufficient to heal the bone defect and does not elicit heterotopic mineralization. In contrast, 

in Aim 2A, high dose BMP-2 (regardless of delivery system) effectively recapitulated 

heterotopic bone formation using the same rat model, similar to that observed clinically with 

the use of high doses of BMP-2. Thus, in Aim 2B, we investigated the role of BMP-2 dose 

on gene expression in the defect site and adjacent muscle during the inflammatory and early 

repair phases of our bone defect model. 

 Temporal patterns of gene expression in bone defect tissue showed two interesting 

differences between low dose and high dose BMP-2 treated defects. First, osteogenic gene 

expression levels began to plateau by day 14 for low dose BMP-2, but high dose BMP-2 

resulted in steady increases in osteogenic gene expression through 21 days. In a similar result 

following trauma in military personnel, osteogenic genes were more highly expressed in 

wounds that subsequently formed heterotopic mineralization [147]. Secondly, inflammatory 

gene expression in bone defects treated with low dose BMP-2 peaked at day 3, while for 

high dose BMP-2, the pro-inflammatory factors CCR7 and IFNG remained highly expressed 

through day 21. This suggests the bone defect microenvironment following treatment with 

low dose BMP-2 may allow for an earlier resolution of inflammation.  
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 Although few genes were differentially expressed in the direct comparison between 

the two groups, low dose BMP-2 elicited higher inflammatory gene expression in bone 

defects at day 3, while high dose BMP-2 resulted in greater osteogenic gene expression at day 

3. Notably, a heightened inflammatory response with low dose BMP-2 compared to high 

dose BMP-2 was contrary to our hypothesis. Nonetheless, this peak in inflammatory gene 

expression occurred at day 3, further supporting the theory of a more classical healing 

cascade with low dose BMP-2, compared to the response to high dose BMP-2, which 

involved persistent high expression of inflammatory genes over time. Just as early 

inflammation is necessary for healing, a significant contributor to delayed bone healing or 

eventual non-union is an unresolved (local or systemic) inflammatory response. In a sheep 

osteotomy model, inflammation was heightened and prolonged in sheep with mechanically-

induced delayed bone healing [131]. Since heterotopic mineralization is believed to be 

stimulated by inflammation [146], the prolonged inflammation observed with high dose 

BMP-2 may have contributed to the initiation of this pathology. Besides prolonged 

inflammation, high dose BMP-2 led to delayed expression of inflammatory (IL1A, IFNG at 

day 7) and osteogenic (COL1A1 at day 14) markers in intact muscle compared to intact 

muscle in animals treated with low dose BMP-2. An increase in inflammatory and osteogenic 

genes in intact muscle suggested possible systemic effects resulting from the use of high dose 

BMP-2. Protein expression studies are underway with the goal of corroborating these 

changes in gene expression. 

 Exploration of the gene expression profiles of tissue from bone defects and the 

adjacent soft tissue as a function of BMP-2 dose provided a crucial first step towards 

elucidating the pathological mechanisms associated with inflammation and heterotopic 

mineralization often observed with high dose BMP-2 (and seen in Aim 2A of this work). 
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Advancing our understanding of the cellular and molecular factors that participate in the 

bone repair process in a critically sized bone defect model may allow for the development of 

improved tissue engineering therapies to restrict heterotopic bone formation. 

7.5 Strategies to Mitigate Heterotopic Bone with High Dose BMP-2 

 Traumatic bone injuries, and particularly critically sized defects, necessitate surgical 

intervention for repair, often involving augmentation with supraphysiological amounts of 

BMP-2. Adverse effects such as heterotopic mineralization and inflammation observed with 

high dose BMP-2 can be compounded by the delivery of high dose BMP-2 within collagen 

sponge, which has limited ability to retain growth factor. Despite the efficacy of BMP-2 for 

bone regeneration, investigation into biomaterial strategies capable of attenuating these 

negative reactions is necessary. Since heterotopic mineralization was observed with a high 

dose of BMP-2 in our rat segmental bone defect model in Aim 2A, our subsequent objective 

was to evaluate the ability of ECM-derived amniotic membrane surrounding the bone defect 

space to attenuate heterotopic mineralization in critically sized bone defects treated with high 

dose BMP-2. One major advantage of the materials used in this study—collagen sponge and 

amniotic membrane—is their availability for use clinically, which would drastically accelerate 

the translation of amnion for bone regeneration applications. 

 Amniotic membrane functioned as a reservoir for BMP-2, retaining more BMP-2 

than PCL mesh scaffolds through 21 days in vitro. As hypothesized, heterotopic 

mineralization was reduced with amnion surrounding collagen sponge compared to collagen 

sponge alone. The attenuated heterotopic mineralization may be attributed to amnion 

functioning as a biological sink to retain BMP-2, as amniotic membrane is known to harbor 

a wide array of growth factors and cytokines [51, 61, 62, 231, 232]. Furthermore, the 

patented PURION® process that the amnion undergoes has been shown to maintain the 



www.manaraa.com

 130 

biological activity of the tissue [51], so it was likely the amnion bound (possibly permanently) 

a portion of the BMP-2 following release from the collagen scaffold. Additionally, the 

immunomodulatory factors present in the amnion [51, 61] may have tempered the 

inflammatory response such that the subsequent pathogenesis of heterotopic ossification 

was minimized. 

 In the present study, amnion tissue was still present at 12 weeks and may have 

impaired cellular infiltration into the defect space, thus contributing to the delayed bone 

formation in the defect. Prior analyses determined that amnion tissue had an effective pore 

size on the order of nanometers and was capable of supporting cell attachment on the 

surface but limited the invasion of cells into the scaffold [237]. Thus, in addition to playing a 

biological role, the amnion may have been a physical barrier to contain BMP-2 within the 

defect space. Likely, both the structural and biological properties of the amniotic membrane 

contributed to the reduced heterotopic mineralization, though more investigation into these 

mechanisms is necessary. Future work exploring macroporous amniotic membrane and 

evaluating the bioactivity of the BMP-2 after interaction with amnion may allow for 

elucidation of whether the physical or biological role of the membrane was more crucial in 

its ability to minimize heterotopic bone deposition. 

 We observed moderate inflammatory infiltrate mostly in the area of residual amnion 

tissue, and this response may have exacerbated the delay in bone healing. Nonetheless, the 

clinical use of these grafts, which are allogeneic in nature, may result in attenuated 

inflammatory/immune responses compared to the heightened response observed in the 

current rat model. 
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7.6 Final Conclusions 

 In summary, this thesis evaluated novel translatable strategies for promoting 

biomaterial degradation and growth factor bioactivity and localization, as well as reducing 

heterotopic mineralization in a challenging segmental bone defect model. Of significance, 

our rat model recapitulated adverse effects associated with orthotopic high dose BMP-2 

delivery, particularly heterotopic mineralization, prolonged local inflammation, and systemic 

inflammatory effects. The spatiotemporal differences in gene expression may, in part, 

explain the heterotopic mineralization and tissue swelling seen clinically with high doses of 

BMP-2. By providing insight into the complex process of bone healing as a function of 

BMP-2 dose, we have identified specific alterations in gene expression that are involved in 

the early healing of large bone defects. The findings here support the overall hypothesis that 

a biomaterial delivery vehicle that allows for localized growth factor availability and minimal 

heterotopic bone formation would facilitate structural and functional restoration of 

segmental bone defects. By considering these fundamental biomaterial parameters, we may 

more effectively harness endogenous repair mechanisms for successful bone regeneration. 
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APPENDIX A 

A.1  Histomorphometry Protocol 

 For Safranin O stained sections, the red stained regions were considered alginate, 

and the blue stained regions were considered infiltrating tissue. The images were first 

converted from RGB (Red, Green, Blue) to HSV (Hue, Saturation, Value) color space and 

separated into red and blue colors by their hue values (0° to 360°) to allow separation of 

regions based on color [164]. All hue values (H – Hue channel) outside the 40°-275° 

segment (yellow, green, and blue colors) were considered as ‘red’ color encompassing the 

variation in red color seen in the images (Figure 32A). Using the Value channel (V), values 

greater than 90% were considered ‘white’ and assigned as the image background. This 

assumption agreed with the white spaces in the images that were neither red nor blue 

stained. An obvious caveat is the assumption of unstained areas as areas without tissue. The 

indices obtained from the color and background separations were used to generate binary 

images of the red stained alginate and blue stained tissue. These areas were normalized to 

total area. Additionally, a frequency distribution representing the relative area of the 

individual alginate regions normalized to total area was generated for every image to identify 

differences in the relative size distribution of alginate loci. 

 Similar techniques were used to evaluate the Picrosirius red stained images, with 

some important differences dictated by image composition. Imaging under polarized 

microscopy produced a dark background, green/yellow birefringence for organized collagen 

(lamellar bone), dark red color for disorganized collagen structures, and white color for 

unstained areas. The images were first converted from RGB to the YUV (luma and 

chrominance) color space to highlight the white areas and saved as ‘tiff’ format files. These 
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saved images were subsequently converted to HSV color space as described above to 

demarcate the white-colored birefringent non-collagenous areas (outside 0°-160°). The 

original RGB images were also converted to HSV color space to identify areas of 

green/yellow (7°-175°) (Figure 32B) and red colors (outside 7°-300°) within the image. 

Regions not defined as one of the three color cut-offs were considered background. Binary 

images of only green/yellow, red, and white colored areas of the images were generated for 

reference, and the relative areas measured. Additionally, a particle size filter (50-pixel 

connectivity) was applied to the binarized images to isolate large contiguous organized 

structures as expected in mature bone. 
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Figure 32. Color separation in histology images. (A) Red alginate areas from Safranin O 
staining were filtered for quantification. (B) Green/yellow lamellar bone from Picrosirius red 
staining was filtered for subsequent area analysis. Scale bar = 100 µm. 
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